K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2016

\(\Leftrightarrow x^2-y^2=16\)

\(\Leftrightarrow\left(x-y\right)\cdot\left(x+y\right)=16\)

XONG LẬP BẢNG LÀ RA 

6 tháng 1 2016

nghiệm nguyên bn ạ! giải giúp tớ vs!

6 tháng 1 2016

chán quá! mai phải nộp bt cho cô rùi nhg ko biết lm!

7 tháng 1 2016

sao dùng đc! nhg thui tui giải đc bài này rùi! cảm ơn bn đã nhắc! :))

9 tháng 11 2017

b) Do \(13x^2\ge0\)nên \(24y^2\le2015\)

\(\Rightarrow y^2\le83\)

Đến đây xét các trường hợp của y là được

9 tháng 11 2017

a)  http://olm.vn/hoi-dap/question/1058362.html

22 tháng 4 2020

Pt có nghiệm=>\(\Delta^'\ge0\)

=>9-2(m-2)≥0 

=>13-2m≥0

=>m≤\(\frac{13}{2}\)

Theo Viet ta có:\(\hept{\begin{cases}x_1+x_2=3\\x_1x_2=\frac{m-2}{2}\end{cases}}\)

Khi đó:\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=11-m\)

=>\(A\ge11-\frac{13}{2}=\frac{9}{2}\)

Vậy...

13 tháng 8 2019

\(\left(x,y\right)\rightarrow\left(a,b\right)\)

\(+,a=0\Rightarrow b^2=b\Leftrightarrow a^2=a\Rightarrow\left[{}\begin{matrix}a=0\\a=1\end{matrix}\right.\)

\(tt:b=0\Rightarrow\left[{}\begin{matrix}a=1\\a=0\end{matrix}\right.\)

\(+,a;b\ne0\Rightarrow a^2\ge a;b^2\ge b\left("="\Leftrightarrow a=1;b=1\right)ma:a^2+b^2=a+b\Rightarrow a=b=1\)

vậy:..

13 tháng 8 2019

a strange way to solve...

1) \(x^2+y^2=x+y\)

\(\Leftrightarrow x^2-x+y^2-y=0\)

Coi phương trình trên là pt bậc 2 với ẩn là x.

+) Xét \(x=0\Leftrightarrow y=0\)( thỏa )

+) Xét \(x\ne0\)

Để pt có nghiệm thì \(\Delta\ge0\)

\(\Leftrightarrow1^2-4\left(y^2-y\right)\ge0\)

\(\Leftrightarrow1-4y^2+4y\ge0\)

\(\Leftrightarrow4y^2-4y-1\le0\)

\(\Leftrightarrow\left(2y-1\right)^2\le2\)

\(\Leftrightarrow0\le\left(2y-1\right)^2\le2\)

Vì y nguyên nên \(2y-1\) nguyên

Do đó \(\left(2y-1\right)^2\in\left\{0;1\right\}\)

\(\Leftrightarrow2y-1\in\left\{0;1\right\}\)

\(\Leftrightarrow\left[{}\begin{matrix}y=\frac{1}{2}\left(loai\right)\\y=1\left(thoa\right)\end{matrix}\right.\)

Khi \(y=1\) ta có \(pt\Leftrightarrow x^2+1=x+1\)

\(\Leftrightarrow x^2-x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loai\right)\\x=1\left(chon\right)\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left\{\left(0;0\right);\left(1;1\right);\left(0;1\right);\left(1;0\right)\right\}\)

Hết nghiệm chưa ?

14 tháng 10 2020

đk: \(-\sqrt{5}\le x\le\sqrt{5}\)

*) Ta có: \(M^2=\left(2x+\sqrt{5-x^2}\right)^2\le\left(2^2+1^2\right)\left(x^2+5-x^2\right)=25\Rightarrow M^2\le25\Rightarrow-5\le M\le5\)

Nếu M=5 thì \(M^2=25\)

Dấu '=' xảy ra khi và chỉ khi \(\frac{x}{2}=\sqrt{5-x^2}\)và \(x^2\le5\Leftrightarrow x=2\)

Vậy Max M=5 khi x=2

*) Theo trên thì \(-5\le M\le5\)nhưng GTNN của M không bằng -5 vì \(-\sqrt{5}\le x\le\sqrt{5}\Rightarrow M\ge-2\sqrt{5}\)

Vậy Min M = \(-2\sqrt{5}\)khi \(x=-\sqrt{5}\)

14 tháng 10 2020

ĐK: \(-\sqrt{5}\le x\le\sqrt{5}\)

Ta có \(M^2=\left(2x+\sqrt{5-x^2}\right)\le\left(2^2+1\right)\left(x^2+5-x^2\right)=25\)

\(\Rightarrow M\le25\Rightarrow-5\le M\le5\)

Nếu M=5 thì M2=25 dấu BĐT xảy ra \(\Leftrightarrow\frac{x}{2}=\sqrt{5-x^2}\)và \(x^2\le5\Leftrightarrow x=2\)

vậy maxM=5 khi x=2

Theo trên thì -5 \(\le M\le5\)nhưng giá trị nhỏ nhất của M không bằng -5 vì \(-\sqrt{5}\le x\le\sqrt{5}\)=> M\(\ge-2\sqrt{5}\)

Vậy minM=\(-2\sqrt{5}\)khi x\(=-\sqrt{5}\)

30 tháng 4 2020

Hùng Nguyễn làm giúp e đi anh hùng ới ơi khocroi e h ngu cái hpt quá r

30 tháng 4 2020

Đoàn Gia Khánh tui cũng k giỏi giang gì về cái hpt :vv

24 tháng 5 2020

\(x^2+3x+m-3=0\)

Ta có \(\Delta=b^2-4ac\)

             \(=3^2-4.1.\left(m-3\right)\)

             \(=9-4m+12\)

             \(=21-4m\)

Đẻ pt có 2 nghiệm \(x_1;x_2\)\(\Leftrightarrow\Delta\ge0\Leftrightarrow21-4m\ge0\)

                                                  \(\Leftrightarrow x\le\frac{21}{4}\)

Áp dụng vi-ét ta có 

\(\hept{\begin{cases}x_1+x_2=-3\\x_1.x_2=m-3\end{cases}}\)

Ta có \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=5\Leftrightarrow\frac{x_1^2+x_2^2}{x_1.x_2}=5\)

                                        \(\Leftrightarrow x_1^2+x_2^2=5x_1x_2\)

                                        \(\Leftrightarrow x_1^2+x_2^2-5x_1.x_2=0\)

                                       \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-5x_1x_2=0\)

                                        \(\Leftrightarrow\left(x_1+x_2\right)^2-7x_1x_2=0\)

                                       \(\Leftrightarrow\left(-3\right)^2-7\left(m-3\right)=0\)

                                        \(\Leftrightarrow9-7m+21=0\)

                                        \(\Leftrightarrow30-7m=0\)

                                        \(\Leftrightarrow7m=30\)

                                       \(\Leftrightarrow m=\frac{30}{7}\) (TM)

Vậy \(m=\frac{30}{7}\) thì thỏa mãn bài toán 

25 tháng 5 2020

vẽ hộ cái hình