Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=100
Xét tử N
92-(1/9)-(2/10)-(3/11)- ... -(90/98)-(91/99)-(92/100)
=(1+1+1+...+1)-(1/9)-(2/10)-(3/11)- ... -(90/98)-(91/99)-(92/100)
=1-(1/9)+1-(2/10)+1-(3/11)+......+1-(90/98)+1-(91/99)+1-(92/100)
=(8/9)+(8/10)+(8/11)+ ...+ (8/98)+(8/99)+(8/100)
=8.[(1/9)+(1/10)+(1/11)+...+(1/98)+(1/99)+(1/100)]
=40[(1/45)+(1/50)+(1/55)+...+(1/495)+(1/500)]
=>N=40
=>M/N=5/2
a) \(\frac{x}{4}=\frac{16}{x^2}\)\(=>x^3=16.4\)\(=>x^3=64\)\(=>x=4\)
b) \(\frac{4}{3}:\frac{4}{5}=\frac{2}{3}.\left(\frac{1}{10}.x\right)\)\(=>\frac{4}{3}.\frac{5}{4}=\frac{2}{3}\left(\frac{1}{10}x\right)\)\(=>\frac{5}{3}=\frac{2}{3}\left(\frac{1}{10}x\right)\)\(=>\frac{5}{3}:\frac{2}{3}=\frac{1}{10}x\)\(=>\frac{5}{3}.\frac{3}{2}=\frac{1}{10}x\)\(=>\frac{5}{2}=\frac{1}{10}x\)\(=>x=\frac{5}{2}:\frac{1}{10}\)\(=>x=\frac{5}{2}.10\)\(=>x=25\)
vậy x=25
1.
a) \(\frac{x}{4}=\frac{16}{x^2}\)
\(\Rightarrow x^3=64\)
\(\Rightarrow x^3=4^3\)
\(\Rightarrow x=4\)
b) \(1\frac{1}{3}:0,8=\frac{2}{3}.\left(0,1.x\right)\)
\(\frac{5}{3}=\frac{2}{3}.\frac{x}{10}\)
\(\frac{x}{10}=\frac{5}{2}\)
\(\Rightarrow x=\frac{5.10}{2}=25\)
2.
\(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\)
\(3A=1+\frac{1}{3}+...+\frac{1}{3^{97}}+\frac{1}{3^{98}}\)
\(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^{97}}+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\right)\)
\(2A=1-\frac{1}{3^{99}}< 1\)
\(\Rightarrow A=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\)
A=(1-1/1)+(1-1/4)+(1-1/9)+(1/16)+..........+(1-1/100)
=>1-99/100
\(S=\frac{3}{1^2\cdot2^2}+\frac{5}{2^2\cdot3^2}+\frac{7}{3^2\cdot4^2}+...+\frac{99}{49^2\cdot50^2}\)
\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+.....+\frac{1}{49^2}-\frac{1}{50^2}\)
\(=1-\frac{1}{50^2}=\frac{2499}{2500}\)
\(T=\frac{1}{\left(2-1\right)\left(2+1\right)}+\frac{1}{\left(3-1\right)\left(3+1\right)}+...+\frac{1}{\left(50-1\right)\left(50+1\right)}\)
\(=\frac{1}{1\cdot3}+\frac{1}{2\cdot4}+\frac{1}{3\cdot5}+...+\frac{1}{49\cdot51}\)
\(=\frac{1}{2}\cdot\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{1}{2}\cdot\left(1+\frac{1}{2}-\frac{1}{51}\right)=\frac{151}{204}\)
Vì \(\frac{2499}{2500}>\frac{151}{204}\)nên S>T
JOKER_Võ Văn Quốc, T = \(\frac{1}{2}.\left(1-\frac{1}{51}+\frac{1}{2}-\frac{1}{50}\right)\)mới đúng
Sẽ dễ hơn nếu bạn chia ra 2 vế \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)và \(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{48+50}\)
1/1+2+1/1+2+3+1/1+2+3+4+...+1/1+2+3+...+99+1/50
=1/(2+1).2:2+1/(3+1).3:2+1/(4+1).4:2+...+1/(99+1).99:2+1/50
=2/2.3+2/3.4+2/4.5+...+2/99.100+1/50
=2(1/2-1/3+1/3-1/4+1/4-1/5+...+1/99-1/100)+1/50
=2.49/100+1/50=49/50+1/50=1
tick nha ^^
xin lõi bạn, tui không biết giải