Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chưa đủ bạn ơi còn nhiều số nữa hãy gắng suy nghĩ giúp mình đi
\(M=\dfrac{10n+25}{2n+4}=\dfrac{5\left(2n+5\right)}{2n+4}=5\cdot\dfrac{2n+4}{2n+4}+\dfrac{1}{2n+4}\)
để M ∈ Z
=> \(2n+4\inƯ\left\{1\right\}=\left\{-1;1\right\}\)
\(=>\left\{{}\begin{matrix}2n+4=1\\2n+4=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2n=-3\\2n=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n=-\dfrac{3}{2}\\n=-\dfrac{5}{2}\end{matrix}\right.\) thì M ∈Z
3.(n + 2) chia hêt cho n - 2
3n + 6 chia hết cho n - 2
3n - 6 + 12 chia hết cho n - 2
3.(n - 2) + 12 chia hết cho n - 2
=> 12 chia hết cho n - 2
=> n - 2 thuộc Ư(12) = {1 ; 2 ; 3 ; 4; 6 ; 12}
Ta có bảng sau :
n - 2 | 1 | 2 | 3 | 4 | 6 | 12 |
n | 3 | 4 | 5 | 6 | 8 | 14 |
P>3 suy ra P có dạng 3k+1 hoặc 3k+2
nếu P=3k+1 thì P+14=3k+1+14=3k+15 là hợp số (trái đề bài)
nếu P=3k+2 thì P+14=3K+2+14=3K+16 có thể là số nguyên tố(chọn)
P+7=3k+2+7=3k+9 là hợp số(đpcm)
+để 3k là số nguyên tố thì k = 1
+để 7k là số nguyên tố thì k=1
\(n^2+10n=n.n+10n=n.\left(n+10\right)\)
Để n(n+10) là số nguyên tố => n + 10 là số nguyên số
MÀ nếu n + 10 là số nguyên tố thì n(n+10) không nguyên tố => n = 1
Vậy giá trị duy nhất của n là n =1