Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
AH=9*12/15=7,2cm
b: ΔHAB vuông tại H có HM vuông góc AB
nên MH^2=MA*MB
Xét ΔBMN và ΔCMA có
góc BMN=góc AMC
góc MNB=góc MAC
=>ΔBMN đồng dạng với ΔCMA
a: Xét ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC
b: \(AH=\sqrt{9\cdot16}=12\left(cm\right)\)
\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)
=>AC=20(cm)
a: Xét ΔHAC vuông tại H và ΔABC vuông tại A có
góc C chung
=>ΔHAC đồng dạng vói ΔABC
b: \(AB=\sqrt{5^2-3^2}=4\left(cm\right)\)
AH=3*4/5=2,4cm
HB=4^2/5=3,2cm
c: FH/FA=BH/BA
EA/EC=BA/BC
BH/BA=BA/BC
=>FH/FA=EA/EC
a: Xét ΔBAE vuông tại A và ΔBHD vuông tại H có
góc ABE=góc HBD
=>ΔBAE đồng dạng với ΔBHD
b: BC=căn 6^2+8^2=10cm
AH=6*8/10=4,8cm
a) Xét ΔABH có BI là đường cao ứng với cạnh AH(gt)
nên \(\dfrac{IA}{IH}=\dfrac{BA}{BH}\)(Tính chất tia phân giác của tam giác)(1)
Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{BAH}=\widehat{ACH}\left(=90^0-\widehat{ABH}\right)\)
Do đó: ΔAHB\(\sim\)ΔCHA(g-g)
Suy ra: \(\dfrac{AH}{CH}=\dfrac{AB}{AC}=\dfrac{HB}{HA}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{AB}{HB}=\dfrac{AC}{HA}\)(2)
Từ (1) và (2) suy ra \(\dfrac{IA}{IH}=\dfrac{AC}{HA}\)(đpcm)
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: ΔBCA vuông tại A có AH vuông góc BC
nên AH^2=HB*CH
c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
lỗi
CK là phân giác ΔABC =>KB/KA=BC/AC
CK là phân giác ΔAHC =>MH/MA=HC/AC
CK là phân giác \(\Delta_{ABC}\) =>\(\dfrac{KB}{KA}=\dfrac{BC}{AC}\) (1)
CK là phân giác \(\Delta_{AHC}\) =>\(\dfrac{MH}{MA}=\dfrac{HC}{AC}\) (2)