Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét △BEA và △BAC có :
\(\widehat{E}=\widehat{A}\left(=90^o\right)\)
\(\widehat{B}\)là góc chung
\(\Rightarrow\)△BEA ~ △BAC (g.g)
b) +) Vì △BEA ~ △BAC
\(\Rightarrow\frac{AB}{BC}=\frac{BE}{AB}\)
\(\Rightarrow AB^2=BE.BC\)
\(\Rightarrow BE=1,8\left(cm\right)\)
+) Áp dụng định lý Pythagoras vào △ABC, ta được :
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AC^2=5^2-3^2\)
\(\Rightarrow AC^2=16\)
\(\Rightarrow AC=4\left(cm\right)\)
+) Vì △BEA ~ △BAC
\(\Rightarrow\frac{AE}{AC}=\frac{BE}{AB}\)
\(\Rightarrow AE=\frac{AC.BE}{AB}=\frac{4\cdot1,8}{3}=2,4\left(cm\right)\)
c) Xét △BAI và △BEK có :
\(\widehat{A}=\widehat{E}=\left(90^o\right)\)
\(\widehat{ABI}=\widehat{IBC}\left(=\frac{1}{2}\widehat{ABC}\right)\)
\(\Rightarrow\)Vì △BAI ~ △BEK (g.g)
\(\Rightarrow\frac{EK}{AI}=\frac{BE}{BA}\)
\(\Rightarrow BE.AI=BA.EK\)(ĐPCM)
d) Vì BI là tia phân giác \(\widehat{B}\)của Vì △ABC
\(\Rightarrow\hept{\begin{cases}\frac{KA}{KE}=\frac{AB}{BE}\\\frac{IC}{IA}=\frac{BC}{AB}\end{cases}}\)
Vì Vì △BEA ~ △BAC
\(\Rightarrow\frac{AB}{BE}=\frac{BC}{AB}\)
\(\Rightarrow\frac{KA}{KE}=\frac{IC}{IA}\)(ĐPCM)
a,Xét 2▲ HBA và ▲ABC
\(_{\widehat{HBA}}\)=\(\stackrel\frown{BAC}\)(=90*)
\(_{\widehat{BHA}}\)=\(\widehat{ACB}\)(cùng phụ vs góc ABC)
===> ▲HBA đồng dạng vs ▲ABC(g.g)
b, Áp dụng đinh lý pytago vs ▲ABC;
BC=\(\sqrt{AB^2+AC^2}\)=\(\sqrt{12^2}+16^2\)=20(cm)
Ta có Sabc = 1/2 x AB x AC
= 1/2 x BC x AH
=> AB x AC=AH x BC=>AH=\(\dfrac{12x16}{20}\)=9,6(cm)
Áp dụng định lý pytago vs ▲ HAC:
HC=\(\sqrt{Ac^2-}AH^2\)=12,8(cm)
chứng minh tương tự vs ▲ HBA ta dc BH=7,2(cm)
A B C H