Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tập xác định D = R. ; y' = 0 ⇔ x = 0 ; = 0 .
Ta có bảng biến thiên :
TenAnh1
TenAnh1
A = (-4.32, -5.92)
A = (-4.32, -5.92)
A = (-4.32, -5.92)
B = (11.04, -5.92)
B = (11.04, -5.92)
B = (11.04, -5.92)
Từ bảng biến thiên ta thấy = 4 .
b) Tập xác định D = R. y’ = 12x2 – 12x3 = 12x2 (1 – x) ;
y’ = 0 ⇔ x = 0, x = 1 ; = -∞ .
Ta có bảng biến thiên :
Từ bảng biến thiên ta thấy = 1 .
a) Tập xác định: R; y' = 3(1 - x2); y' = 0 ⇔ x = ± 1 .
Bảng biến thiên :
Đồ thị như hình bên.
b) Tập xác định : R ; y' = 3x2 + 8x + 4; y' = 0 ⇔ x= -2, x = .
Bảng biến thiên :
Đồ thị như hình bên.
c) Tập xác định : R ;
y' = 3x2 + 2x + 9 > 0, ∀x. Vậy hàm số luôn đồng biến, không có cực trị.
Bảng biến thiên :
Đồ thị hàm số như hình bên.
d) Tập xác định : R ;
y' = -6x2 ≤ 0, ∀x. Vậy hàm số luôn nghịch biến, không có cực trị.
Bảng biến thiên :
Đồ thị hàm số như hình bên.
Lời giải hay đó!!!
Nhưng không biết người giải nó có hiểu nó không.... (thở dài)
a) Vì và ( hoặc và ) nên các đường thẳng: x = -3 và x = 3 là các tiệm cận đứng của đồ thị hàm số.
Vì và nên các đường thẳng: y = 0 là các tiệm cận ngang của đồ thị hàm số.
b) Hai tiệm cận đứng : ; tiệm cận ngang : .
c) Tiệm cận đứng : x = -1 ;
vì nên đồ thị hàm số không có tiệm cận ngang.
d) Hàm số xác định khi :
Vì ( hoặc ) nên đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.
Vì nên đường thẳng y = 1 là tiệm cận ngang (về bên phải) của đồ thị hàm số.
a) Tập xác định : D = R { 1 }. > 0, ∀x 1.
Hàm số đồng biến trên các khoảng : (-∞ ; 1), (1 ; +∞).
b) Tập xác định : D = R { 1 }. < 0, ∀x 1.
Hàm số nghịch biến trên các khoảng : (-∞ ; 1), (1 ; +∞).
c) Tập xác định : D = (-∞ ; -4] ∪ [5 ; +∞).
∀x ∈ (-∞ ; -4] ∪ [5 ; +∞).
Với x ∈ (-∞ ; -4) thì y’ < 0; với x ∈ (5 ; +∞) thì y’ > 0. Vậy hàm số nghịch biến trên khoảng (-∞ ; -4) và đồng biến trên khoảng (5 ; +∞).
d) Tập xác định : D = R { -3 ; 3 }. < 0, ∀x ±3.
Hàm số nghịch biến trên các khoảng : (-∞ ; -3), (-3 ; 3), (3 ; +∞).
a) y = = . Tập xác định D = R. Ta biết rằng hàm số liên tục tại x = 0 nhưng không có đạo hàm tại điểm này. Ta có bảng biến thiên :
Từ bảng biến thiên ta thấy = 0.
b) Tập xác định D = (0 ; +∞ ). ; y' = 0 ⇔ x = 2 (do x > 0);
Ta có bảng biến thiên :
Từ bảng biến thiên ta thấy = 4.
a) Tập xác định : R ; y' =-4x3 + 16x = -4x(x2 - 4);
y' = 0 ⇔ x = 0, x = ±2 .
Bảng biến thiên :
Đồ thị như hình bên.
b) Tập xác định : R ; y' =4x3 - 4x = 4x(x2 - 1);
y' = 0 ⇔ x = 0, x = ±1 .
Bảng biến thiên :
Đồ thị như hình bên.
c) Tập xác định : R ; y' =2x3 + 2x = 2x(x2 + 1); y' = 0 ⇔ x = 0.
Bảng biến thiên :
Đồ thị như hình bên.
d) Tập xác định : R ; y' = -4x - 4x3 = -4x(1 + x2); y' = 0 ⇔ x = 0.
Bảng biến thiên :
Đồ thị như hình bên.
.
a) y′=6x2+6x−36=6(x2+x−6)y′=6x2+6x−36=6(x2+x−6)
y’= 0 ⇔ x2+ x – 6= 0 ⇔ x=2; x=-3
Bảng biến thiên :
Hàm số đạt cực đại tại x = -3 , ycđ = y(-3) = 71
Hàm số đạt cực tiểu tại x = 2 , y(ct) = y(2) = -54
b) y’ = 4x3 + 4x = 4x(x2 + 1); y’ = 0 ⇔ x = 0.
Bảng biến thiên :
Hàm số đạt cực tiểu tại x = 0 , y(ct) = y(0) = -3
c) Tập xác định : D = R\{0}
Bảng biến thiên :
Hàm số đạt cực đại tại x = -1 , ycđ = y(-1) = -2 ;
Hàm số đạt cực tiểu tại x = 1 , yct = y(1) = 2.
d) Tập xác định : D = R.
y’ = 3x2(1 – x)2 + x3 . 2(1 – x)(-1) = x2 (1 – x)[3(1 – x) - 2x] = x2 (x – 1)(5x – 3) .
y’ = 0 ⇔ x = 0, x =, x = 1.
Bảng biến thiên :
Hàm số đạt cực đại tại x = , ycđ = = ;
Hàm số đạt cực tiểu tại x = 1 , yct = y(1) = 0 .
e) Tập xác định : D = R.
Hàm số đạt cực tiểu tại