Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có hình vẽ:
A B C K E
a/ Xét tam giác AKB và tam giác AKC có:
AB = AC (GT)
BK = CK (GT)
AK: cạnh chung
=> tam giác AKB = tam giác AKC (c.c.c)
Ta có: tam giác AKB = tam giác AKC
=> góc AKB = góc AKC (2 góc tương ứng)
Mà góc AKB + góc AKC = 1800
=> góc AKB = góc AKC = 1800 : 2 = 900
Vậy AK vuông góc BC (đpcm)
b/ Ta có: \(\begin{cases}AK\perp BC\\EC\perp BC\end{cases}\)=> EC // AK (đpcm)
c/ Ta có: AC: chung (1)
Ta có: góc BAC + góc CAE = 1800
hay 900 + CAE = 1800
=> góc CAE = 900
=> góc BAC = góc CAE (2)
Trong tam giác vuông cân ABC có:
góc ABC + góc ACB = 900
Vì tam giác ABC cân nên góc ABC = góc ACB
=> góc ABC = góc ACB = 900:2 = 450
Ta có: góc ACB + góc ACE = 900 (vì góc BCE=900)
hay 450 + góc ACE = 900
=> góc ACE = 450
Vậy góc ACB = góc ACE = 450 (3)
Từ (1),(2),(3) => tam giác ACB = tam giác ACE
=> CE = CB (2 cạnh tương ứng) (đpcm)

Gọi H là trung điểm của BC. Trên tia đối của tia AM lấy K sao cho AM=MK
Xét \(\Delta AMN\)và \(\Delta KMB\)có\(\hept{\begin{cases}AM=MK\\\widehat{AMN}=\widehat{KMB}\\MB=MN\end{cases}}\)
\(\Rightarrow\Delta AMN=\Delta KMB\left(c.g.c\right)\)
\(\Rightarrow\widehat{MAN}=\widehat{MKB}\)
\(\Rightarrow AN=BK=AM\)
mà \(AB>AM\Rightarrow AB>BK\)
\(\Rightarrow\widehat{BKA}>\widehat{BAK}\)
\(\Rightarrow\widehat{MAN}>\widehat{BAM}\)
A B C M N D
Trên tia đồi của tia MA lấy điểm D sao cho: MA=MD
Ta có tam giác ABC cân tại A nên:\(\widehat{ACB}=\widehat{ABC}\text{ mà:}\widehat{ANM}>\widehat{ACN}\left(\text{góc ngoài}\right)\Rightarrow\widehat{ANM}>\widehat{ABN}\Rightarrow AN< AB\)
mặt khác:
\(\Delta AMN=\Delta DMB\left(c.g.c\right)\Rightarrow AN=BD< AB\Rightarrow\widehat{BAM}>\widehat{BDM};\widehat{MAN}=\widehat{BDM}< \widehat{BAM}\)

Xét tam giác ADE và ABC có
A : góc chung
D = B (đồng vị)
E = C (đồng vị)
Ta có: Dx // BC mà D là trung điểm của AB
=> E là trung điểm của AC
=> AE = EC (đpcm)
Bài 2a:
Trên tia đối của cạnh MA lấy điểm D sao cho MA = MD.
=> M là trung điểm của AD
Xét tam giác ABM và tam giác DCM có:
AM = DM (M là trung điểm của AD)
AMB = DMC (2 góc đối đỉnh)
BM = CM (M là trung điểm của BC)
=> Tam giác ABM = Tam giác DCM (c.g.c)
=> BAM = CDM (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AB // CD
mà AB _I_ AC
=> AC _I_ CD
Xét tam giác ABC và tam giác CDA có:
AB = CD (tam giác ABM = tam giác DCM)
BAC = DCA ( = 900)
AC là cạnh chung
=> Tam giác ABC = Tam giác CDA (c.g.c)
=> BC = DA
mà AM = \(\frac{1}{2}\)DA (M là trung điểm của AD)
=> AM = \(\frac{1}{2}\)BC
Chúc bạn học tốt ^^
=>
2b) Điểm M bạn lấy trùng rồi nhưng mk vẫn giải nhé
Xét ΔABC có M là trung điểm của AB
N là trung điểm của AC
=> MN là đường trung bình của ΔABC
=> MN//BC và MN = 1/2 BC
Chúc bạn làm bài tốt