K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2015

\(\left(\sqrt{2x-2}+\sqrt{3-2x}\right)^2=2x-2+3-2x+2\sqrt{\left(2x-2\right)\left(3-2x\right)}=1+2\sqrt{\left(2x-2\right)\left(3-2x\right)}\ge1\)

VẬy min = 1 

Dấu '=' xảy ra khi \(\left(2x-2\right)\left(3-2x\right)=0\)

AH
Akai Haruma
Giáo viên
4 tháng 7 2021

$A=2x-\sqrt{x}=2(x-\frac{1}{2}\sqrt{x}+\frac{1}{4^2})-\frac{1}{8}$

$=2(\sqrt{x}-\frac{1}{4})^2-\frac{1}{8}$

$\geq \frac{-1}{8}$

Vậy $A_{\min}=-\frac{1}{8}$. Giá trị này đạt tại $x=\frac{1}{16}$

 

AH
Akai Haruma
Giáo viên
4 tháng 7 2021

$B=x+\sqrt{x}$

Vì $x\geq 0$ nên $B\geq 0+\sqrt{0}=0$

Vậy $B_{\min}=0$. Giá trị này đạt tại $x=0$

 

8 tháng 8 2021

a) \(A=\sqrt{x-2}+\sqrt{6-x}\)

\(\Rightarrow A^2=x-2+6-x+2\sqrt{\left(x-2\right)\left(6-x\right)}\)

Ta có \(\sqrt{\left(x-2\right)\left(6-x\right)}\ge0,\forall x\)

Do đó \(A^2=4+2\sqrt{\left(x-2\right)\left(6-x\right)}\ge4\)

Mà A không âm \(\Leftrightarrow A\ge2\)

Dấu "=" \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

Áp dụng BĐT Bunhiacopxky:

\(A^2=\left(\sqrt{x-2}+\sqrt{6-x}\right)^2\le\left(x-2+6-x\right)\left(1+1\right)=4\cdot2=8\)

\(\Leftrightarrow A\le\sqrt{8}\)

Dấu "=" \(\Leftrightarrow x-2=6-x\Leftrightarrow x=4\)

Mấy bài còn lại y chang nha 

Tick hộ nha

8 tháng 8 2021

ank

 

NV
14 tháng 8 2021

\(2x-3\sqrt{x}+2=2\left(\sqrt{x}-\dfrac{3}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)

\(\Rightarrow\dfrac{1}{2x-3\sqrt{x}+2}\le\dfrac{1}{\dfrac{7}{8}}=\dfrac{8}{7}\)

\(\Rightarrow\dfrac{-1}{2x-3\sqrt{x}+2}\ge-\dfrac{8}{7}\)

\(A_{min}=-\dfrac{8}{7}\) khi \(x=\dfrac{9}{16}\)

Ta thấy:\(2x-3\sqrt{x}+2=2\left(x-\dfrac{3}{2}\sqrt{x}+1\right)\)\(=2\left(x-2.\dfrac{3}{4}\sqrt{x}+\dfrac{9}{16}+\dfrac{7}{16}\right)=2\left(\sqrt{x}-\dfrac{3}{4}\right)^2+\dfrac{7}{8}\)

Vì \(2\left(\sqrt{x}-\dfrac{3}{4}\right)^2\ge0\) với \(\forall x\ge0\) nên \(2\left(\sqrt{x}-\dfrac{3}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)với \(\forall x\ge0\) 

\(\Rightarrow\dfrac{1}{2x-3\sqrt{x}+2}\le\dfrac{7}{8}\)với \(\forall x\ge0\) 

\(\Rightarrow A=\dfrac{-1}{2x-3\sqrt{x}+2}\ge-\dfrac{7}{8}\)với \(\forall x\ge0\) 

Dấu "=" xảy ra khi và chỉ khi \(\sqrt{x}-\dfrac{3}{4}=0\Leftrightarrow\sqrt{x}=\dfrac{3}{4}\Leftrightarrow x=\dfrac{9}{16}\) 

xin lỗi nha bài này tui gửi nhầm lên đây nên đừng nói tui tự làm tự giải kiếm điểm nhá

17 tháng 10 2020

\(hcmuop\underrightarrow{jjjjjjjjj}me\)

A đạt Min khi: \(2+\sqrt{-x^2+2x+7}\) lớn nhất <=> \(\sqrt{-x^2+2x+7}\) lớn nhất

\(\sqrt{\left(-x^2+2x+7\right)}=\sqrt{\left[-\left(-x^2+2x+7\right)\right]}=\sqrt{\left[-\left(x-1\right)^2+8\right]}\)

\(=\sqrt{\left[\left(2\sqrt{2}-x+1\right)\left(2\sqrt{2}+x-1\right)\right]}\)

Áp dụng BĐT Cô si, ta có: \(\sqrt{\left[\left(2\sqrt{2}-x+1\right)\left(2\sqrt{2}+x-1\right)\right]}\Leftarrow\frac{\left[\left(2\sqrt{2}-x+1\right)\left(2\sqrt{2}+x-1\right)\right]}{2}\Leftarrow2\sqrt{2}\)

\(\Rightarrow2+\sqrt{\left[\left(2\sqrt{2}-x+1\right)\left(2\sqrt{2}+x-1\right)\right]}\Leftarrow2\sqrt{2}+2\)

\(\frac{3}{\sqrt{\left[\left(2\sqrt{2}-x+1\right)\left(2\sqrt{2}+x-1\right)\right]}}\ge\frac{3}{\left(2\sqrt{2}+2\right)}\)hay \(A\ge\frac{3}{\left(2\sqrt{2}+2\right)}\)

Dấu = xảy ra <=> \(2\sqrt{2}-x+1=2\sqrt{2}-x+1=2\sqrt{2}+x-1\Leftrightarrow x=1\)

Vậy: \(Min_A=\frac{3}{2+\sqrt{-x^2+2x+7}}\)tại x = 1

P/s: Tôi làm bừa ko bt có đúng ko

bn tham khảo câu hỏi tương tự nha!