Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2P=\(\dfrac{2}{2}+\dfrac{2}{2^2}+...+\dfrac{2}{2^{100}}\)
2P=\(1+\dfrac{1}{2}+...+\dfrac{1}{2^{99}}\)
2P-P=\(\dfrac{1}{2}-\dfrac{1}{2^{100}}\)
P=\(\dfrac{1}{2}-\dfrac{1}{2^{100}}\)
\(P=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\)
\(2P=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}\)\(\)
\(2P-P=1-\dfrac{1}{2^{100}}\)
\(P=\dfrac{2^{100}}{2^{100}}-\dfrac{1}{2^{100}}\)
\(P=\dfrac{2^{100}-1}{2^{100}}\)
Ta có: \(K=\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}< \dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{3}-\dfrac{1}{100}< \dfrac{1}{3}\) (1)
\(K=\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}>\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{100.101}\)
\(=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{4}-\dfrac{1}{101}>\dfrac{1}{5}\) (2)
Từ (1), (2) \(\Rightarrow\dfrac{1}{5}< K< \dfrac{1}{3}\left(đpcm\right)\)
\(B=1^2+2^2+\cdot\cdot\cdot+100^2\)
\(\Rightarrow B=1\cdot\left(2-1\right)+2\cdot\left(3-1\right)+\cdot\cdot\cdot+100\cdot\left(101-1\right)\)
\(\Rightarrow B=\left(1\cdot2+2\cdot3+\cdot\cdot\cdot+100\cdot101\right)-\left(1+2+\cdot\cdot\cdot+100\right)\)
Đặt A = 1.2 + 2.3 + ... + 100.101
\(\Rightarrow3A=1\cdot2\cdot3+2\cdot3\cdot3+\cdot\cdot\cdot+100\cdot101\cdot3\)
\(\Rightarrow3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+\cdot\cdot\cdot+100\cdot101\cdot\left(102-99\right)\)
\(\Rightarrow3A=\left(1\cdot2\cdot3+\cdot\cdot\cdot+100\cdot101\cdot102\right)-\left(1\cdot2\cdot3+\cdot\cdot\cdot+99\cdot100\cdot101\right)\)
\(\Rightarrow3A=100\cdot101\cdot102\)
\(\Rightarrow A=100\cdot101\cdot34\)
\(\Rightarrow A=343400\)
\(\Rightarrow B=A-\left(1+2+\cdot\cdot\cdot+100\right)\)
\(\Rightarrow B=343400-\frac{101\cdot100}{2}\)
\(\Rightarrow B=343400-101\cdot50\)
\(\Rightarrow B=343400-5050\)
\(\Rightarrow B=338350\)
\(A=3+3^2+3^3+...+3^{100}+3^{101}\)
\(3A=3^2+3^3+3^4+...+3^{101}+3^{102}\)
\(3A-A=\left(3^2+3^3+3^4+...+3^{101}+3^{102}\right)-\left(3+3^2+3^3+...+3^{100}+3^{101}\right)\)
\(2A=3^{102}-3\)
\(A=\frac{3^{102}-3}{2}\)
Tớ chỉ làm được câu A thôi, bạn thông cảm. Với lại tớ không chắc đúng đâu.
=))
Đề là j thế : CMR K < 1 à !
Câu hỏi của Phương Thảo Nguyễn - Toán lớp 7 - Học toán với OnlineMath
~ Công thức :
\(\frac{n-1}{n!}=\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)
Ta có :
\(K=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)
\(\Rightarrow K=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)
\(\Rightarrow K=\frac{1}{1!}-\frac{1}{100!}\)
\(\Rightarrow K=1-\frac{1}{100!}\)
Vậy \(K=1-\frac{1}{100!}\)
~ Ủng hộ nhé
Ta có: a1 = 1, a2 = -1
=> a3 = 1 . -1 = -1
=> a4 = -1 . -1 = 1
=> a5 = -1 . 1 = -1
=> a6 = 1 . -1 = -1
Từ các số trên ta có chu kì ( 1 , -1, -1 ). ( Chu kì 3 )
mà 100 : 3 dư 1 => a100 = 1
Vậy : a100 = 1
Lẻ là 1
Chẵn là -1
=>\(a_{100}\)là chẵn nên a100=-1
Vậy a100=-1
Đoán vậy ==
bài làm
C=1+3+32+.............+3100
C=3C−C2
3C=3+32+33+.............+399+3100+3101
C=1+3+32+..................+399+3100
3C-C=(3+32+33+.............+399+3100+3101)-(1+3+32+..................+399+3100)
Triệt tiêu các số hạng co giá trị tuyệt đối bằng nhau, ta được:
2C=-1+3100
⇒C=3100−12
D=2/D+D/3
2D=2101-2100+299-298+..............+23-22
D=2100-299+298-297+............+22-2
2D+D=2101-2100+299-298+..............+23-22+2100-299+298-297+............+22-2
Triệt tiêu các số hạng có giá trị tuyệt đối bằng nhau, ta được:
3D=2101-2
⇒D=2101−23
B=31×4 +54×9 +79×16 +.........+1981×100
Quan sát biểu thức, ta có nhận xét:
4-1=3;
9-4=5;
16-9=7;
.......;100-81=19
=> Hiệu hai số ở mẫu bằng giá trị ở tử
⇒B=1−14 +14 −19 +19 −116 +.......+181 −1100
⇒B=1−1/100
B=99/100 <100/100
Vậy B<1