Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(P=a^2+b^2+c^2+ab+bc+ca\)
\(P=\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{2}\left(a^2+b^2+c^2\right)\)
\(P\ge\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{6}\left(a+b+c\right)^2=6\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Trước hết, với \(a+b+c=1\) ta có:
\(a^2+b^2+c^2=\left(a^2+b^2+c^2\right)\left(a+b+c\right)\)
\(=\left(a^3+ab^2\right)+\left(b^3+bc^2\right)+\left(c^3+ca^2\right)+a^2b+b^2c+c^2a\)
\(\ge2a^2b+2b^2c+2c^2a+a^2b+b^2c+c^2a\)
Hay \(a^2+b^2+c^2\ge3\left(a^2b+b^2c+c^2a\right)\)
Từ đó:
\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}=\dfrac{a^4}{a^2b}+\dfrac{b^4}{b^2c}+\dfrac{c^4}{c^2a}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\)
\(\ge\dfrac{3\left(a^2b+b^2c+c^2a\right)\left(a^2+b^2+c^2\right)}{a^2b+b^2c+c^2a}=3\left(a^2+b^2+c^2\right)\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ; \(\forall a;b;c\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow ab+bc+ca\le1\)
\(\Rightarrow P_{max}=1\) khi \(a=b=c\)
Lại có:
\(\left(a+b+c\right)^2\ge0\) ; \(\forall a;b;c\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)
\(\Leftrightarrow ab+bc+ca\ge-\dfrac{a^2+b^2+c^2}{2}=-\dfrac{1}{2}\)
\(P_{min}=-\dfrac{1}{2}\) khi \(a+b+c=0\)
Ta có:
0 < a < 1 ⇒ a - 1 < 0 ⇒ a(a - 1) < 0 ⇒ a2 - a < 0 (1)
Tương tự:
0 < b < 1 ⇒ b2 - b < 0 (2)
0 < c < 1 ⇒ c2 - c < 0 (3)
Cộng (1); (2); (3) vế theo vế ta được:
a2 + b2 + c2 - a - b - c < 0
⇔ a2 + b2 + c2 < a + b + c
⇔ a2+ b2 + c2 < 2 (do a + b + c = 2)
Câu hỏi của Nguyễn Thị Thùy - Toán lớp 8 - Học toán với OnlineMath !!!
a nhân 2 vào 2 vế ta có
2a2+2b2+2c2=2ab +2bc+2ca
=> 2a2+2b2+2c2-2ab-2bc-2ca=0
=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2)=0
=>(a-b)2+(b-c)2+(c-a)2=0
=>(a-b)=(b-c)=(c-a)=0
=>a-b=0 =>a=b (1)
b-c=0=>b=c (2)
từ (1) và (2)
=>a=b=c (đpcm)