Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(79^{m+1}-79^m=79^m\left(79-1\right)=79^m.78.\) chia hết cho 78
Vậy \(79^{m+1}-79^m\) chia hết cho 78 (m thuộc N)
\(79^{m+1}-79^m=79.79^m-79^m\)
\(=79^m.\left(79-1\right)\)
\(=78.79^m\)chia hết cho 78.
Chúc em học tốt^^
Câu b bài 1 :
B = x2x2 + x2x2 + x2y2 + x2y2 + x2y2 + y2y2 + y2
= ( x2x2 + x2y2 ) + ( x2x2 + x2y2 ) + ( x2y2 + y2y2 ) + y2
= x2( x2 + y2 ) + x2( x2 + y2 ) + y2( x2 + y2 ) + y2
= ( x2 + y2 ) (x2 + x2 + y2 ) + y2
= 1( x2 + 1) + y2
= x2 + y2 +1 = 2
b: 9^2n có chữ số tận cùng là 1
=>9^2n+14 có chữ số tận cùng là 5
=>9^2n+14 chia hết cho 5
c: n(n^2+1)(n^2+4)
=n(n-2)(n-1)(n+1)(n+2)+10n^3
Vì n;n-2;n-1;n+1;n+2 là 5 số liên tiếp
nên n(n-2)(n-1)(n+1)(n+2) chia hết cho 5
=>n(n^2+1)(n^2+4) chia hết cho 5
Do m2; n2 là số chính phương nên m2; n2 chia 3 chỉ có thể dư 0 hoặc 1
+ Nếu m2; n2 chia 3 cùng dư 1 thì m2 + n2 chia 3 dư 2 (trái với đề bài)
+ Nếu trong 2 số m2; n2 có 1 số chia hết cho 3; 1 số chia 3 dư 1 thì m2 + n2 chia 3 dư 1 (trái với đề bài)
=> m2; n2 cùng chia hết cho 3
Mà 3 là số nguyên tố => m chia hết cho 3; n chia hết cho 3 (đpcm)
Do m2;n2 là số chính phương nên m2;n2 chia hết cho 3 chỉ có thể dư 0 hoặc 1.
+ Nếu m2;n2 chia 3 cùng dư 1 thì m2+n2 chia 3 dư 2 (trái với đề bài có - vô lí)
+ Nếu trong 2 xố m2; n2 có 1 số chia hết cho 3; 1 số chia 3 dư 1 thì m2+n2 chia 3 dư 1 (trái đề bài- vô lí)
=> m2;n2 cùng chia hết cho 3
Mà 3 là số nguyên tố=> m chia hết cho 3; n chia hết cho 3 (điều phải chứng minh)
79m+1-79m
=79m.79-79m
=79m(79-1)
=79m.78 chia hết cho 78
=>79m+1-79m chia hết cho 78 (dpcm)