Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3x(x + 7)2 - 11x2(x + 7) + 9(x + 7) = (x + 7)[3x(x + 7) - 11x2 + 9) = (x + 7)(3x2 + 21x - 11x2 + 9)
= (x + 7)(-8x2 + 21x + 9)(-8x2 + 24x - 3x + 9) = (x + 7)[-8x(x - 3) - 3(x - 3)] = -(x + 7)(8x + 3)(x - 3)
b) 3x(x - 9)2 - (9 - x)3 = 3x(x - 9)2 + (x - 9)3 = (x - 9)2(3x + x - 9) = (x - 9)2(4x - 9)
c) pm + 2.q - pm + 1.q3 - p2.qn + 1 + p.qn + 3 = (pm + 2.q - p2.qn + 1) - (pm + 1.q3 - p.qn + 3)
= p2.q(pm - qn) - p.q3(pm - qn) = pq(pm - qn)(p - q2)
d) x2y2z + xy2z2 + x2yz = xyz(xy + yz + x)
a) \(3x\left(x+7\right)^2-11x^2\left(x+7\right)+9\left(x+7\right)\)
\(=\left(x+7\right)\left[3x\left(x+7\right)-11x^2+9\right]=\left(x+7\right)\left(3x^2+21x-11x^2+9\right)\)
\(=\left(x+7\right)\left(-8x^2+21x+9\right)=\left(x+7\right)\left[\left(-8x^2+24x\right)-\left(3x-9\right)\right]\)
\(=\left(x+7\right)\left[-8x\left(x-3\right)-3\left(x-3\right)\right]=-\left(x+7\right)\left(x-3\right)\left(8x+3\right)\)
b) \(3x\left(x-9\right)^2-\left(9-x\right)^3=3x\left(x-9\right)^2+\left(x-9\right)^3\)
\(=\left(x-9\right)^2\left(3x+x-9\right)=\left(x-9\right)^2\left(4x-9\right)\)
c) \(p^{m+2}.q-p^{m+1}.q^3-p^2.q^{n+1}+p.q^{n+3}\)
\(=p^{m+1}.q\left(p-q^2\right)-p.q^{n+1}\left(p-q^2\right)\)\(=p.q.\left(p-q^2\right).\left(p^m.q^n\right)\)
d) \(x^2y^2z+xy^2z^2+x^2yz=xyz\left(xy+yz+x\right)\)
Bài 1 :
a) xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
b) \(x^3-x+3x^2y+3xy^2+y^3-x-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
Đã có kết quả
Bài 1,chữa phần a
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
=[xy(x+y)+xyz]+[yz(y+z)+xyz]+xz(x+z)
=xy(x+y+z)+yz(x+y+z)+xz(x+z)
=y(x+y+z)(x+z)+xz(x+z)
=(x+z)(xy+y2+yz+xz)
=(x+z)(x+y)(y+z)
Chữa phần b
x3-x+3x2y+3xy2+y3-y
=(x+y)(x+y-1)(x+y+1)
Bài2
a3+b3+c3=(a+b)3-3ab(a+b)+c3=-c3-3ab(-c)+c3=3abc
Ai làm đúng như này ớ sẽ k
Gọi Ư CLN của tử và mẫu là d => 3n+1 chia hết cho d, 5n+2 chia hết cho d . Sau đó nhân 3n+1 với 5 và 5n+2 với 3, rồi lấy mẫu trừ tử
=> 15n+6-(15n+5) chia hết cho d => 1 chia hết cho d => d=1=> (3n+1;5n+2)=1(ĐFCM)
Bài 2:
x=y+1 =>x-y=1
Ta có :
(x-y)(x+y)(x2+y2)(x4+y4)= (x2-y2)(x2+y2)(x4+y4)
=(x4-y4)(x4+y4)=x8-y8 (ĐFCM)
Bài 1:
\(a,5xy\left(xy-4x-7y\right)\)
\(b,\left(x-2y\right)\left(3-6y\right)\)
\(c,\left(y+1\right)\left(x+3y+3\right)\)
\(d,10y\left(x+y\right)\left(x-y\right)\)
BÀI 1: a) 5x2y2 + 20x2y - 35xy2 = 5xy .xy + 5xy .4x - 5xy .7y
=5xy .( xy + 4x - 7y )
b) 3 .( x - 2y ) + 6y .( 2y - x ) = 3 .(x - 2y ) - 6y .( x - 2y )
= ( x - 2y ) . ( 3 - 6y )
c) x .( y + 1 ) + 3 .( y2 + y + 1 ) = x .( y + 1 ) + 3 .( y + 1 )2
= ( y + 1 ) .[ x + 3 .( y + 1 ) ]
d) 10xy .( x + y ) - 5 .( 2x + y ) . y2 = 10x2y + 10xy2 - 10xy2 - 5y3
= 10x2y - 5y3 = 5y .( 2x2 - y2 )
mk làm bài 1 r nhé><
a, x^3 + y^3 + z^3 = (x+y)^3 - 3xy(x+y) + z^3
= (x+y+z)[(x+y)^2 - (x+y)z + z^2] - 3xy(x+y)
= -3xy(x+y) (do x+y+z=0)
Vì x+y+z=0 =>x+y=-z
=> -3xy(x+y)=3xyz
Bài này có nhiều cách giải bạn cũng có thể dựa vào x+y+z=0 => x=-(y+z),....... rồi thay vào
Và sau này khi giải các bài toán thì bạn có thể AD: Nếu x+y+z=0 thì x^3 +y^3+z^3=3xyz