Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\dfrac{3+\sqrt{5}}{2}}=\sqrt{\dfrac{6+2\sqrt{5}}{2}}=\sqrt{\dfrac{\left(1+\sqrt{5}\right)^2}{2}=\dfrac{1}{2}+\dfrac{\sqrt{5}}{2}}\)
\(\sqrt{\dfrac{3+\sqrt{5}}{2}}=\sqrt{\dfrac{6+2\sqrt{5}}{4}}=\dfrac{\sqrt{5}+1}{2}\)
\(=\dfrac{1}{2}+\dfrac{1}{2}\sqrt{5}\)
Bài 1
a > 0
\(a^2=3+\sqrt{5+2\sqrt{3}}+3-\sqrt{5+2\sqrt{3}}\) \(+2\sqrt{3^2-\left(5+2\sqrt{3}\right)}\)
= \(6+2\sqrt{4-2\sqrt{3}}=6+2\left(\sqrt{3}-1\right)=4+2\sqrt{3}\) = \(\left(\sqrt{3}+1\right)^2\)
=> a = \(\sqrt{3}+1\)
Thay vào : a2 -2a - 2 = \(4+2\sqrt{3}-2\left(\sqrt{3}+1\right)-2=0\) (đpcm)
Câu 1:
\(\Leftrightarrow B\cdot\dfrac{x^2+1}{x-1}=\dfrac{x^2-2x+1-x^2+3x-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Leftrightarrow B\cdot\dfrac{x^2+1}{x-1}=\dfrac{-x^2-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{-\left(x^2+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Leftrightarrow B=\dfrac{-1}{x^2+x+1}\)
ahihi không biết nhưng bài đó lớp mấy
Lớp 9 đó bạn ductai !
- Bài này ở lướp mình thuộc dạng nâng cao !