\(x^2\)+ bx + c 
xát định a,b,c biết:
f(1) = 4; f(-1) = 8; a - c =...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2018

Ta có f (1) = 4

=> a + b + c = 4 => b = 4 - c - a (1)

và f (-1) = 8

=> a - b + c = 8 (2)

Thế (1) vào (2), ta có: a - (4 - c - a) + c = 8

=> a - 4 + c + a + c = 8

=> 2a + 2c - 4 = 8

=> 2 (a + c) = 12

=> a + c = 6 (3)

và a - c = 4 (4)

Cộng (3) vào 4) => 2a = 10

=> a = 5

=> c = 6 - a = 6 - 5 = 1

Thay a = 5; c = 1 vào (2), ta có:

5 - b + 1 = 8

=> -b = 8 - 1 - 5

=> -b = 2

=> b = -2

Vậy khi f (x) có a = 5; b = -2; c = 1 thì f (1) = 4; f (-1) = 8

10 tháng 3 2019

Có lẽ bạn nên sửa đề thành \(f\left(x\right)=...x^2+1...\)hoặc là \(g\left(x\right)=...\left(bx-1\right)...\)

Ta có: 

\(f\left(x\right)=ax^3+4x^3-4x+8=\left(a+4\right)x^3-4x+8\)

\(g\left(x\right)=x^3+4x\left(bx-1\right)+c-3=x^3+4bx^2-4x+c-3\)

Để \(f\left(x\right)=g\left(x\right)\Leftrightarrow\hept{\begin{cases}a+4=1\\4b=0\\c-3=8\end{cases}\Leftrightarrow\hept{\begin{cases}a=-3\\b=0\\c=11\end{cases}}}\)

Kết luận

3 tháng 4 2017

Ta có: \(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow f\left(0\right)=c⋮3\Rightarrow c⋮3\)

\(\left\{{}\begin{matrix}f\left(1\right)=a+b+c⋮3\\f\left(-1\right)=a-b+c⋮3\end{matrix}\right.\)

\(c⋮5\)

\(\Rightarrow\left\{{}\begin{matrix}a+b⋮3\\a-b⋮3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2a⋮3\\2b⋮3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a⋮3\\b⋮3\end{matrix}\right.\) ( do \(\left(2;3\right)=1\) )

Vậy \(a,b,c⋮3\)

4 tháng 4 2017

Ta có: \(f\left(x\right)=ax^2+bx+c\)

\(f\left(1\right)=a\cdot1^2+b\cdot1+c=4\Rightarrow a+b+c=4\)

\(f\left(-1\right)=a\left(-1\right)^2+b\left(-1\right)+c=8\Rightarrow a-b+c=8\)

\(a-c=4\) suy ra ta có \(\left\{{}\begin{matrix}a+b+c=4\\a-b+c=8\\a-c=4\end{matrix}\right.\)

Dễ dàng suy ra \(\left\{{}\begin{matrix}a=5\\b=-2\\c=1\end{matrix}\right.\)

Vậy hệ số \(a;b;c=5;-2;1\)

12 tháng 12 2015

Vì f(0)=5 nên x*0+b*0+c=5

                    0+0+c=5 nên c=5

Vì f(1)=0 nên a*12+b*1+5=0

                  a+b+5=0

                 a+b=0-5

               a+b=-5

Vì f(5)=0 nên a*52+b*5+5=0

                   5(5a+b+1)=0

                   5a+b+1=0/5=0

                   4a+a+b=0-1

                   4a+(-5)=-1

                    4a=-1-(-5)

                   4a=4

                  a=4/4

                 a=1

nên b=-5-1=-6

Vậy a=1;b=-6 và c=5

12 tháng 12 2015

Ta co: 

  • f(0) = a.02+b.0+c = 0+0+c = c= 5
  • f(1) = a.12+b.1+c = a+b+5 = 0  => a+b = -5
  • f(5) = a.52+b.5+c = 25a + 5b + 5 = 0  => 25a+5b = -5

=> a+b = 25a+5b = -5

=> 25a-a + 5b-b = 0

=> 24a + 4b = 0

=> 24a = -4b

=> 24/-4 = b/a

=> b/a = -6

Tu \(\frac{b}{a}=-6=>\frac{b}{-6}=\frac{a}{1}=\frac{b+a}{-6+1}=-\frac{5}{-5}=1\)

=> a = 1  ;  b=-6

Vay: a=1  ;  b=-6  ;  c =5

5 tháng 4 2021

\(f\left(0\right)=ax^2+bx+c=a.0^2+b.0+c=c=4\)

\(f\left(1\right)=ax^2+bx+c=a+b+c=3\)

\(f\left(-1\right)=a-b+c=7\)

Ta có hpt \(\hept{\begin{cases}c=4\\a+b+c=3\\a-b+c=7\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=-1\left(1\right)\\a-b=3\left(2\right)\end{cases}}\)

Lấy (1) - (2) ta được : \(2b=-4\Rightarrow b=-2\)

Thay b = -2 vào (1) \(a-2=-1\Rightarrow a=1\)

Vậy \(\left(a;b;c\right)=\left(1;-2;4\right)\)

1 tháng 6 2018

Ở chỗ g(x) bn kiểm tra số sau dấu = là x hay là nhân nha, nếu là x thì bn viết thừa nha

1 tháng 6 2018

à mình viết thừa đó :) cảm ơn bạn đã nhắc