K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2023

1. Để tìm các đa thức P(x) thỏa mãn điều kiện P(2014) = 2046 và P(x) = P(x^2 + 1) - 33 + 32, ∀x ≥ 0, ta có thể sử dụng phương pháp đệ quy. Bước 1: Xác định bậc của đa thức P(x). Vì không có thông tin về bậc của đa thức, chúng ta sẽ giả sử nó là một hằng số n. Bước 2: Xây dựng công thức tổng quát cho đa thức P(x). Với bậc n đã xác định, ta có: P(x) = a_n * x^n + a_{n-1} * x^{n-1} + ... + a_0 Bước 3: Áp dụng điều kiện để tìm các hệ số a_i. Thay x = 2014 vào biểu thức và giải phương trình: P(2014) = a_n * (2014)^n + a_{n-1} * (2014)^{n-1} + ... + a_0 = 2046 Giải phương trình này để tìm các giá trị của các hệ số. Bước 4: Áp dụng công thức tái lập để tính toán các giá trị tiếp theo của P(x): P(x) = P(x^2+1)-33+32 Áp dụng công thức này lặp lại cho đến khi đạt được kết quả cuối cùng. 2. Để tìm các đa thức P(x) ∈ Z[x] bậc n thỏa mãn điều kiện [P(2x)]^2 = 16P(x^2), ∀x ∈ R, ta có thể sử dụng phương pháp đệ quy tương tự như trên. Bước 1: Xác định bậc của đa thức P(x). Giả sử bậc của P(x) là n. Bước 2: Xây dựng công thức tổng quát cho P(x): P(x) = a_n * x^n + a_{n-1} * x^{n-1} + ... + a_0 Bước 3: Áp dụng điều kiện để tìm các hệ số a_i. Thay x = 2x vào biểu thức và giải phương trình: [P(2x)]^2 = (a_n * (2x)^n + a_{n-1} * (2x)^{n-1} + ... + a_0)^2 = 16P(x^2) Giải phương trình này để tìm các giá trị của các hệ số. Bước 4: Áp dụng công thức tái lập để tính toán các giá trị tiếp theo của P(x): [P(4x)]^2 = (a_n * (4x)^n + a_{n-1} * (4x)^{n-1} + ... + a_0)^2 = 16P(x^2) Lặp lại quá trình này cho đến khi đạt được kết quả cuối cùng.

 

2 tháng 8 2023

 Câu đầu tiên của đề bài là "Với mọi \(n\inℤ^+\)..." chứ không phải \(m\) nhé, mình gõ nhầm.

3 tháng 8 2023

a) Ta phân tích \(n=x_1^{a_1}.x_2^{a_2}...x_m^{a_m}\) (với \(x_1;x_2;..x_n\) là số nguyên tố ;

\(a_1;a_2;..a_m\inℕ^∗\) và là số mũ tối đa của mỗi số nguyên tố ) 

Khi đó ta có \(\sigma\left(n\right)=\left(a_1+1\right)\left(a_2+1\right)...\left(a_m+1\right)\)

mà \(\sigma\left(n\right)\) lẻ \(\Leftrightarrow\) \(a_1+1;a_2+1;...a_m+1\) lẻ

\(\Leftrightarrow a_1;a_2;..a_m\) chẵn

\(\Leftrightarrow n\) là số chính phương 

=> n luôn có dạng \(n=l^2\) 

Mặt khác  \(x_1;x_2;..x_m\) là số nguyên tố 

Nếu  \(x_1;x_2;..x_m\) đều là số nguyên tố lẻ thì l lẻ

<=> r = 0 nên n = 2r.l2 đúng (1) 

Nếu  \(x_1;x_2;..x_m\) tồn tại 1 cơ số \(x_k=2\) 

TH1 :  \(a_k\) \(⋮2\) 

\(\Leftrightarrow a_k+1\) lẻ => \(\sigma\left(n\right)\) lẻ (thỏa mãn giả thiết)

=> n có dạng n = 2r.l2 (r chẵn , l lẻ)(2) 

TH2 : ak lẻ

Ta dễ loại TH2 vì khi đó \(a_k+1⋮2\)  nên \(\sigma\left(n\right)⋮2\) (trái với giả thiết) 

Nếu  \(n=2^m\) (m \(⋮2\)) thì r = m ; l = 1 (tm) (3)

Từ (1);(2);(3) => ĐPCM 

1 tháng 8 2023

1e+84937

4 tháng 8 2023

Ta có xn luôn dương

Ta có \(2x_n+1=\) \(2\times\dfrac{\left(2+cos\alpha\right)x_n+cos^2\alpha}{\left(2-2cos2\alpha\right)x_n+2-cos2\alpha}+1=\)

\(=\dfrac{6x_n+2cos^2\alpha+2-cos2\alpha}{\left(2-2cos2\alpha\right)x_n+2-cos2\alpha}\)

\(=\dfrac{6x_n+2cos^2\alpha+2sin^2a+1}{\left(2x_n+1\right)\left(1-cos2\alpha\right)+1}\)

\(=\dfrac{3\left(2x_n+1\right)}{2\sin^2\alpha\left(2x_n+1\right)+1}\)

\(\Rightarrow\dfrac{1}{2x_{n+1}+1}=\dfrac{2\sin^2\alpha\left(2x_n+1\right)+1}{3\left(2x_n+1\right)}\)

\(=\dfrac{1}{3}\left(2\sin^2\alpha+\dfrac{1}{2x_n+1}\right)\)

\(\Rightarrow\dfrac{1}{2x_{n+1}+1}-\sin^2\alpha=\dfrac{1}{3}\left(\dfrac{1}{2x_n+1}-\sin^2\alpha\right)\)

\(\Rightarrow\dfrac{1}{2x_{n+1}+1}-\sin^2\alpha=\left(\dfrac{1}{3}\right)^n\left(\dfrac{1}{2x_1+1}-\sin^2\alpha\right)\)

\(=\left(\dfrac{1}{3}\right)^n\left(\dfrac{1}{3}-\sin^2\alpha\right)\)

\(\Rightarrow y_n=\sum\limits^{n-1}_{i=0}\left(\dfrac{1}{3}\right)^i\left(\dfrac{1}{3}-\sin^2\alpha\right)+n\sin^2\alpha\)

\(=\dfrac{1-\left(\dfrac{1}{3}\right)^n}{1-\dfrac{1}{3}}\left(\dfrac{1}{3}-\sin^2\alpha\right)+n\sin^2\alpha\)

30 tháng 7 2023

\(x_1=a>2;x_{n+1}=x_n^2-2,\forall n=1,2,...\)

mà \(n\rightarrow+\infty\)

\(\Rightarrow a\rightarrow+\infty\Rightarrow x_n\rightarrow+\infty\)

\(\Rightarrow\lim\limits_{n\rightarrow+\infty}\dfrac{1}{x_n}=0\) \(\Rightarrow\lim\limits_{n\rightarrow+\infty}\left(\dfrac{1}{x_nx_{n+1}}\right)=0\)

\(\)\(\Rightarrow\lim\limits_{n\rightarrow+\infty}\left(\dfrac{1}{x_1}+\dfrac{1}{x_1x_2}+\dfrac{1}{x_1x_2x_3}+...+\dfrac{1}{x_1x_2...x_n}\right)=0\)

31 tháng 7 2023

...

 

 

 

Đến hẹn cô lên minigame cho các bạn đây 😉  👉 Các bạn nhanh tay tham gia tại đây nha https://www.facebook.com/olm.vn  GIẢI TOÁN THẦN TỐC - BỐC NGAY TIỀN MẶT   Game nhỏ nhỏ; Quà xinh xinh dành cho các bạn học sinh nhân dịp chuẩn bị vào năm học mới. Nhanh tay rinh những phần quà siêu to khổng lồ với câu hỏi cực kỳ đơn giản nào!!!!  CƠ CẤU GIẢI THƯỞNG HOÀNH TRÁNG NHƯ SAU: - 1 Giải Nhất: Tặng 200.000 đồng +...
Đọc tiếp

Đến hẹn cô lên minigame cho các bạn đây 😉 

👉 Các bạn nhanh tay tham gia tại đây nha https://www.facebook.com/olm.vn

❌ GIẢI TOÁN THẦN TỐC - BỐC NGAY TIỀN MẶT 💸💸 

Game nhỏ nhỏ; Quà xinh xinh dành cho các bạn học sinh nhân dịp chuẩn bị vào năm học mới. Nhanh tay rinh những phần quà siêu to khổng lồ với câu hỏi cực kỳ đơn giản nào!!!!


🎁 CƠ CẤU GIẢI THƯỞNG HOÀNH TRÁNG NHƯ SAU:

- 1 Giải Nhất: Tặng 200.000 đồng + áo OLM + voucher ưu đãi khóa học 20%

- 2 Giải Nhì: Tặng 100.000 đồng + túi Tote OLM + voucher ưu đãi khóa học 20%

- 3 Giải Ba : Tặng 50.000 đồng + móc khóa OLM + voucher ưu đãi khóa học 20%

- 5 Giai Khuyến Khích: Tặng sổ + bút bi OLM + voucher ưu đãi khóa học 20% 

💥3 BƯỚC THAM GIA ĐƠN GIẢN 

Bước 1: "Li.ke" và "Sh.are" bài post Minigame.

Bước 2: C.o.m.m.e.n.t đáp án minigame và dự đoán số người có cùng câu trả lời như bạnBước 3: Tag tên 2 người bạn bất kỳ vào chơi cùng(Ví dụ: 56 - 123 @abc @xyz)

👉 THỂ LỆ TRAO GIẢI THƯỞNG

- Kết quả dựa trên: Đáp án Minigame và số người có cùng câu trả lời đúng như bạn.

- Nếu trường hợp "ĐÁP ÁN" giống nhau, BTC sẽ ưu tiên các bạn có dự đoán gần đúng số người có cùng câu trả lời như bạn.

- Nếu trường hợp "ĐÁP ÁN và DỰ ĐOÁN SỐ NGƯỜI" giống nhau, BTC sẽ ưu tiên bình luận sớm hơn.

 📍Lưu ý

- Thực hiện đầy đủ 3 bước trên

- Người chơi có thể tham gia chơi NHIỀU LẦN, càng c.o.m.m.e.n.t nhiều khả năng trúng giải càng cao.

- KHÔNG ĐƯỢC CHỈNH SỬA c.o.m.m.e.n.t

- Mọi hành vi gian lận sẽ không được tính là hợp lệ và BTC sẽ loại khỏi cuộc thi.

- Trong mọi trường hợp, quyết định của BTC là quyết định cuối cùng.

THỜI GIAN

- Minigame diễn ra từ 20h30 ngày 26/07/2023 đến 23h59h ngày 01/08/2023

- Kết quả sẽ được công bố trong ngày 02/08/2023 tại Fanpage OLM https://www.facebook.com/olm.vn

 Đừng quên thường xuyên truy cập fanpage OLM để xem những bài giảng, bài tập, phương pháp học tập cực hay các em nhé!loading...

12
26 tháng 7 2023

😉 Các bạn nhanh tay tham gia ở đây https://www.facebook.com/olm.vn để giật giải thưởng siêu to khổng lồ nha 😁

26 tháng 7 2023

1 con gấu là: 36 : 3 = 12

1 cái bánh là: ( 26 - 12 ) : 2 = 7

1 Chùm nho là : (15 - 7 ) : 2 = 4

1 con gấu - 1 cái bánh + 1chùm nho

hay: 12 - 7 + 4 = 9

11 tháng 7 2023

\(\sqrt{\left(4-3\sqrt{2}\right)^2}=\left|4-3\sqrt{2}\right|=3\sqrt{2}-4\)

\(\sqrt{\left(2+\sqrt{5}\right)^2}=\left|2+\sqrt{5}\right|=2+\sqrt{5}\\ \sqrt{\left(4+\sqrt{2}\right)^2}=\left|4+\sqrt{2}\right|=4+\sqrt{2}\)

\(\sqrt{6-2\sqrt{5}}=\sqrt{\sqrt{5^2}-2\sqrt{5}+1}=\sqrt{\left(\sqrt{5}-1\right)^2}=\left|\sqrt{5}-1\right|=\sqrt{5}-1\\ \sqrt{7+4\sqrt{3}}=\sqrt{\sqrt{3^2}+2.2\sqrt{3}+2^2}=\sqrt{\left(\sqrt{3}+2\right)^2}=\left|\sqrt{3}+2\right|=\sqrt{3}+2\\ \sqrt{12-6\sqrt{3}}=\sqrt{\sqrt{3^2}-2.3\sqrt{3}+3^2}=\sqrt{\left(\sqrt{3}-3\right)^2}=\left|\sqrt{3}-3\right|=3-\sqrt{3}\)

\(\sqrt{17+12\sqrt{2}}=\sqrt{\left(2\sqrt{2}\right)^2+2.2\sqrt{2}.3+3^2}=\sqrt{\left(2\sqrt{2}+3\right)^2}=\left|2\sqrt{2}+3\right|=2\sqrt{2}+3\)

\(\dfrac{\sqrt{2}-\sqrt{11+6\sqrt{2}}}{\sqrt{6+2\sqrt{5}}-\sqrt{5}}\\ =\dfrac{\sqrt{2}-\sqrt{\sqrt{2^2}+2.3\sqrt{2}+3^2}}{\sqrt{\sqrt{5^2}+2\sqrt{5}+1}-\sqrt{5}}\\ =\dfrac{\sqrt{2}-\sqrt{\left(\sqrt{2}+3\right)^2}}{\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{5}}\\ =\dfrac{\sqrt{2}-\left|\sqrt{2}+3\right|}{\left|\sqrt{5}+1\right|-\sqrt{5}}\\ =\dfrac{\sqrt{2}-\sqrt{2}-3}{\sqrt{5}+1-\sqrt{5}}\\ =-3\)

\(\sqrt{6+2\sqrt{4-2\sqrt{3}}}=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}=\sqrt{6+2\left|\sqrt{3}-1\right|}=\sqrt{6+2\sqrt{3}-2}=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\left|\sqrt{3}+1\right|=\sqrt{3}+1\)

15 tháng 7 2023

-3

4 tháng 7 2023

Để chứng minh rằng một đa giác lồi có n cạnh, khi được chia thành các tam giác bằng nhau bằng cách vẽ n-3 đường chéo đôi một không cắt nhau, thì n phải chia hết cho 3, ta có thể sử dụng phương pháp quy nạp (induction) để giải quyết bài toán này.

Đầu tiên, chúng ta xét trường hợp đơn giản nhất khi n = 3, tức là đa giác là tam giác. Trong trường hợp này, không cần vẽ đường chéo nào cả, vì tam giác đã được chia thành các tam giác bằng nhau. Và n = 3 chia hết cho 3.

Giả sử đa giác có n cạnh thỏa mãn điều kiện trong đề bài. Ta sẽ chứng minh rằng khi thêm một cạnh mới vào đa giác, tức là n+1 cạnh, thì n+1 cũng phải chia hết cho 3.

Giả sử đa giác có n cạnh và đã được chia thành các tam giác bằng nhau bằng cách vẽ n-3 đường chéo đôi một không cắt nhau. Khi thêm một cạnh mới vào đa giác, chúng ta sẽ thêm một tam giác mới và tạo ra một đường chéo mới. Khi đó, số tam giác trong đa giác tăng thêm một đơn vị và số đường chéo tăng thêm một đơn vị.

Điều quan trọng là ta phải đảm bảo rằng khi thêm một cạnh mới vào, chúng ta vẫn có thể chia đa giác thành các tam giác bằng nhau bằng cách vẽ n-2 đường chéo đôi một không cắt nhau. Điều này có nghĩa là ta cần thêm một đường chéo mới để duy trì tính chất của đa giác ban đầu.

Với việc thêm một cạnh mới, số đường chéo tăng lên một đơn vị, nên ta cần có (n-2)+1 = n-1 đường chéo. Điều này đồng nghĩa với việc n-1 phải chia hết cho 3.

Dựa trên quy nạp, chúng ta có thể kết luận rằng với mọi số tự nhiên n ≥ 3, nếu đa giác có n cạnh và được chia thành các tam giác bằng nhau bằng cách vẽ n-3 đường chéo đôi một không cắt nhau, thì n phải chia hết cho 3.

Vậy, điều phải chứng minh đã được chứng minh.

 

Cuộc thi "VẼ MÙA HÈ CỦA EM" ---------------------------------------------------------------------- Kì nghỉ hè chắc hẳn là quãng thời gian mà các bạn học sinh đều mong chờ, vì các em sẽ có một thời gian để nghỉ ngơi, vui chơi thay vì phải đến lớp hằng ngày. Nhân dịp này, HOC24 tổ chức cuộc thi "Vẽ mùa hè của em", để các em có thể chia sẻ về những hoạt động ngày hè của mình, hoặc những việc mình muốn làm trong...
Đọc tiếp

loading...

Cuộc thi "VẼ MÙA HÈ CỦA EM"

----------------------------------------------------------------------

Kì nghỉ hè chắc hẳn là quãng thời gian mà các bạn học sinh đều mong chờ, vì các em sẽ có một thời gian để nghỉ ngơi, vui chơi thay vì phải đến lớp hằng ngày.

Nhân dịp này, HOC24 tổ chức cuộc thi "Vẽ mùa hè của em", để các em có thể chia sẻ về những hoạt động ngày hè của mình, hoặc những việc mình muốn làm trong kì nghỉ hè.

I. THÔNG TIN CUỘC THI

* Đối tượng tham gia: các bạn học sinh trong cộng đồng HOC24.vn

* Nội dung cuộc thi: Vẽ mùa hè của em

* Hình thức làm bài:

Vẽ tranh và chụp hình/scan tải lên. Trên tranh có ghi: HOC24 và Họ tên (tên tài khoản HOC24)

Sau đó gửi Bài dự thi + Họ Tên + Link trang cá nhân HOC24 về mail: hoc24.cfs@gmail.com

Lưu ý: Mỗi bạn chỉ gửi 1 bài dự thi duy nhất, bài dự thi có thể gồm 1 bức tranh hoặc nhiều bức tranh liên quan đến nhau.

Những bức tranh đẹp sẽ được chia sẻ lên trang chủ HOC24.VN.

II. THỜI GIAN TỔ CHỨC

* 22/06/2023: thông báo tổ chức cuộc thi và chính thức nhận bài làm

* 15/07/2023: kết thúc nhận bài thi

III. GIẢI THƯỞNG

            01 giải nhất: 1 áo phông HOC24

            02 giải nhì: 1 túi rút HOC24

            02 giải ba: 1 mũ HOC24 hoặc 1 sổ HOC24

Ngoài ra, mọi bài thi hợp lệ đều sẽ nhận được phần thưởng khích lệ là 5 GP.

------------------------------------------------------------------

Chúc các em sẽ có một mùa hè bổ ích và ý nghĩa!

5
26 tháng 6 2023

Tranh do học sinh được đồ họa bằng máy tính thì có được tham gia không cô?

CT
27 tháng 6 2023

Khuyến khích các em sáng tạo không giới hạn, nên các em có thể vẽ tranh bằng đồ họa máy tính nhé.

11 tháng 7 2023

quãng đường AB dài 52km

27 tháng 6 2023

A B C D M N

Hai tg ACD và tg ABC có đường cao từ A->CD = đường cao từ C->AB nên

\(\dfrac{S_{ACD}}{S_{ABC}}=\dfrac{CD}{AB}=\dfrac{3}{5}\)

\(S_{ABCD}=S_{ACD}+S_{BCD}\)

\(\Rightarrow S_{ACD}=\dfrac{3}{3+5}xS_{ABCD}=\dfrac{3}{8}xS_{ABCD}=\dfrac{3}{8}x16=6cm^2\)

\(\Rightarrow S_{ABC}=S_{ABCD}-S_{ACD}=16-6=10cm^2\)

Hai tg ACD và tg BCD có đường cao từ A->CD = đường cao từ B->CD và chung cạnh CD

\(\Rightarrow S_{ACD}=S_{BCD}=6cm^2\)

C/m tương tự ta cũng có 

\(S_{ABC}=S_{ABD}=10cm^2\)

Hai tg ABN và tg ABC có chung đường cao từ A->BC nên

\(\dfrac{S_{ABN}}{S_{ABC}}=\dfrac{BN}{BC}=\dfrac{1}{4}\Rightarrow S_{ABN}=\dfrac{1}{4}xS_{ABC}=\dfrac{1}{4}x10=2,5cm^2\)

đường cao từ N->AB là

\(\dfrac{2xS_{ABN}}{AB}=\dfrac{2x2,5}{5}=1cm\)

Hai tg NCD và tg BCD có chung đường cao từ D->BC nên

\(\dfrac{S_{NCD}}{S_{BCD}}=\dfrac{CN}{BC}=\dfrac{3}{4}\Rightarrow S_{NCD}=\dfrac{3}{4}xS_{BCD}=\dfrac{3}{4}x6=4,5cm^2\)

\(S_{ADN}=S_{ABCD}-S_{ABN}-S_{CDN}=16-2,5-4,5=9cm^2\)

Hai tg AMN và tg ADN có chung đường cao từ N->AD nên

\(\dfrac{S_{AMN}}{S_{ADN}}=\dfrac{AM}{AD}=\dfrac{1}{4}\Rightarrow S_{AMN}=\dfrac{1}{4}xS_{ADN}=\dfrac{1}{4}x9=2.25cm^2\)

\(S_{ABNM}=S_{ABN}+S_{AMN}=2,5+2,25=4,75cm^2\)

Như vậy ta biết diện tích hình thang ABNM, biết đáy lớn AB, biết đường cao (đường cao từ N->AB). Áp dụng công thức tính diện tích hình thang sẽ tính được đáy nhỏ MN. 

Bạn tự tính nốt nhé

 

 

 

 

 

5 tháng 8 2023

Sabcd = 16cm² => (3+5)xHabcd =32 cm => Habcd = 4cm.

Điểm M và N lần lượt = 1/4 AD và BC nên chiều cao ABNM = 4:4 = 1cm. Chiều cao CD đến MN = 4-1= 3cm

Ta có: Sabnm + Smncd = 16cm² => (5+mn)+ (3+mn)x3 = 32cm

4mn+14=32cm => mn=4,5cm