Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(log_2\left(1+log_{3^{-2}}x-log_{3^2}x\right)< 1\)
\(\Leftrightarrow log_2\left(1-\dfrac{1}{2}log_3x-\dfrac{1}{2}log_3x\right)< 1\)
\(\Leftrightarrow log_2\left(1-log_3x\right)< 1\)
\(\Leftrightarrow0< 1-log_3x< 2\)
\(\Leftrightarrow-1< log_3x< 1\)
\(\Leftrightarrow\dfrac{1}{3}< x< 3\Rightarrow\left\{{}\begin{matrix}a=3\\b=3\end{matrix}\right.\) \(\Rightarrow a=b\)
Ta có \(\frac{1}{11};\frac{1}{12};\frac{1}{13};...;\frac{1}{19}>\frac{1}{20}\)
- Suy ra S > \(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}+\frac{1}{20}\)( có 10 số hạng)=\(\frac{10}{20}=\frac{1}{2}\)
- Vậy S>\(\frac{1}{2}\)
Ta có S=1/11+1/12+1/13+...+1/20(có 10 phân số)
S>1/20+1/20+1/20+...+1/20(có 10 phân số)
S<10/20=1/2
Nên tổng của S>1/2
Số nghiệm của các phương trình đã cho chính là số giao điểm của đồ thị hàm số y = f(x) ở vế trái của phương trình cới trục hoành ở câu a), b) và với đường thẳng y = -1 ở câu c).
a) Xét hàm số y = x3 – 3x2 + 5 . Tập xác định : R.
y' = 3x2 - 6x = 3x(x - 2); y' = 0 ⇔ x = 0,x = 2.
Bảng biến thiên:
Đồ thị như hình bên.
Từ đồ thị ta thấy phương trình đã cho có nghiệm duy nhất .
b) Xét hàm số y = -2x3 + 3x2 - 2 . Tập xác định : R.
y' = -6x2 + 6x = -6x(x - 1); y' = 0 ⇔ x = 0,x = 1.
Đồ thị như hình bên. Từ đồ thị ta thấy phương trình đã cho có nghiệm duy nhất .
c) Xét hàm số y = f(x) = 2x2 - 2x4. Tập xác định : R.
y' = 4x - 4x3 = 4x(1 - x2); y' = 0 ⇔ x = 0,x = ±1.
Bảng biến thiên:
Đồ thị hàm số f(x) và đường thẳng y = -1 như hình bên.
Từ đồ thị ta thấy phương trình đã cho có hai nghiệm phân biệt.
Câu 1:
Theo dữ kiện đề bài ta có:
\( \bullet \) PT \(y'=3ax^2+2bx+c=0\) nhận \(x=0\) và \(x=2\) là nghiệm
\(\Rightarrow \left\{\begin{matrix} c=0\\ 3a.2^2+2b.2+c=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c=0\\ 12a+4b=0(1)\end{matrix}\right.\)
\(\bullet\) \(\left\{\begin{matrix} y(0)=d=0\\ y(2)=a.2^3+b.2^2+c.2+d=-4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} d=0\\ 8a+4b+c+d=-4\leftrightarrow 8a+4b=-4(2)\end{matrix}\right.\)
Từ \((1),(2)\Rightarrow a=1,b=-3\)
Do đó pths thu được là : \(y=x^3-3x^2\)
Câu 2:
Có \(y=-x^3+3mx+1\)
\(\Rightarrow \) \(y'=-3x^2+3m=0\Leftrightarrow x^2=m\). Như vậy, để HS có hai cực trị thì \(m>0\)
Khi đó, hai điểm cực trị đó là \(A(\sqrt{m},2\sqrt{m^3}+1)\) và \(B(-\sqrt{m},1-2\sqrt{m^3})\)
Vì \(OAB\) là tam giác vuông tại $O$ lên \(\overrightarrow{OA}\perp \overrightarrow {OB}\Leftrightarrow (\sqrt{m},2\sqrt{m^3}+1)\perp (-\sqrt{m},1-2\sqrt{m^3})\)
\(\Leftrightarrow -\sqrt{m}\sqrt{m}+(1-2\sqrt{m^3})(1+2\sqrt{m^3})=0\Leftrightarrow -m+1-4m^3=0\Rightarrow m=\frac{1}{2}\)
(thỏa mãn điều kiện)
Vậy \(m=\dfrac{1}{2}\)