Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2014-x}{2015-x}\)
\(\Rightarrow A=\frac{2015-x-1}{2015-x}\)
\(\Rightarrow A=1-\frac{1}{2015-x}\)
Để A có Min thì \(\frac{1}{2015-x}\)có GTLN \(\Rightarrow2015-x\)phải đạt GTNN và \(\frac{1}{2015-x}>0\)
\(\Rightarrow2015-x=1\Leftrightarrow x=2014\)
Vậy Min A = 1-1=0<=> x = 2014
\(A=\frac{2015-x-1}{2015-x}=1-\frac{1}{2015-x}\)
A nhỏ nhất khi \(\frac{1}{2015-x}>0\)lớn nhất, để \(\frac{1}{2015-x}\)lớn nhất khi 2015-x>0 nhỏ nhất. 2015-x nhỏ nhất khi x lớn nhất và x là số nguyên dương => x=2014
Answer:
\(A=\left|2x-3\right|-2014\)
Mà \(\left|2x-3\right|\ge0\forall x\Rightarrow\left|2x-3\right|-2014\ge-2014\forall x\)
Dấu "=" xảy ra khi: \(\left|2x-3\right|=0\Rightarrow2x=3\Rightarrow x=\frac{3}{2}\)
Vậy giá trị nhỏ nhất của \(A=-2014\) khi \(x=\frac{3}{2}\)
\(B=x+\left|x\right|\)
Trường hợp 1: \(x\ge0\Rightarrow B=x+x=2x\ge0\left(1\right)\)
Trường hợp 2: \(x\le0\Rightarrow B=x-x=0\left(2\right)\)
Từ (1) và (2) \(\Rightarrow B\ge0\forall x\)
Vậy giá trị nhỏ nhất của \(B=0\) khi \(x\le0\)
\(C=\left|x-2013\right|+\left|x-2014\right|\)
Có: \(\hept{\begin{cases}\left|x-2013\right|\ge x-2013\forall x\\\left|x-2014\right|\ge-x+2014\forall x\end{cases}}\)
\(\Rightarrow\left|x-2013\right|+\left|x-2014\right|\ge x-2013-x+2014\forall x\)
\(\Rightarrow C\ge1\forall x\)
Dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left|x-2013\right|\ge0\\\left|x-2014\right|\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge2013\\x\le2014\end{cases}}\Rightarrow2013\le x\le2014\)
Vậy giá trị nhỏ nhất của \(C=1\) khi \(2013\le x\le2014\)
\(D=\left|x-4\right|+\left|x-5\right|+\left|x-7\right|\)
Có: \(\hept{\begin{cases}\left|x-4\right|\ge0\forall x\\\left|x-7\right|\ge0-x+7\forall x\end{cases}}\Rightarrow\left|x-4\right|+\left|x-7\right|\ge3\forall x\left(1\right)\)
Dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left|x-4\right|\ge0\\\left|x-7\right|\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge4\\x\le7\end{cases}}\Rightarrow4\le x\le7\)
Có: \(\left|x-5\right|\ge0\left(2\right)\)
Dấu "=" xảy ra khi: \(x=5\)
Từ (1) và (2) \(\Rightarrow D\ge3\)
Dấu "=" xảy ra khi \(D\ge3\Rightarrow\hept{\begin{cases}4\le x\le7\\x=5\end{cases}}\Rightarrow x=5\)
Vậy giá trị nhỏ nhất của \(D=3\) khi \(x=5\)
Mấy bạn kia làm sai hết rồi !!
P = |2013 - x| + |2014 - x| = |2013 - x| + |x - 2014|
Áp dụng bđt |a| + |b| ≥ |a + b| ta có :
P = |2013 - x| + |x - 2014| ≥ |2013 - x + x - 2014| =|- 1| = 1
Dấu "=" xảy ra <=> (2013 - x)(x - 2014) ≥ 0 <=> 2013 ≤ x ≤ 2014
Dậy gtnn của P là 1 <=> 2013 ≤ x ≤ 2014
\(\left|2013-x\right|+\left|2014-x\right|\ge\left|2013-x+2014-x\right|\)
\(\left|2013-x\right|+\left|2014-x\right|\ge\left|4027\right|\)
\(\left|2013-x\right|+\left|2014-x\right|\ge4027\)
\(\Rightarrow\)\(Min_P=4027\)
ADBDT |A|+|B|>=|A+B| Ta có
|x-2014|+|2015-x|>=|x-2014+2015-x|
N>=|x-x-2014+2015|
N>=|1|
N>=1
Vậy GTNN Của N là 1