Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)\cdot\cdot\cdot\cdot\left(\frac{1}{2013^2}-1\right)\left(\frac{1}{2014^2}-1\right)\)
\(A=\left(\frac{-3}{4}\right)\left(\frac{-8}{9}\right)\left(\frac{-15}{16}\right)\cdot\cdot\cdot\left(\frac{-4052168}{4052169}\right)\left(\frac{-4056195}{4056196}\right)\)
\(A=\frac{-1\cdot3}{2\cdot2}\cdot\frac{-2\cdot4}{3\cdot3}\cdot\frac{-3\cdot5}{4\cdot4}\cdot....\cdot\frac{-2012\cdot2014}{2013\cdot2013}\cdot\frac{-2013\cdot2015}{2014\cdot2014}\)
\(A=\frac{-1\cdot\left(-2\right)\cdot\left(-3\right)\cdot....\cdot\left(-2012\right)\cdot\left(-2013\right)}{2\cdot3\cdot4\cdot....\cdot2013\cdot2014}\cdot\frac{3\cdot4\cdot5\cdot....\cdot2014\cdot2015}{2\cdot3\cdot4\cdot....\cdot2013\cdot2014}\)
\(A=\frac{-1}{2014}\cdot\frac{2015}{2}=\frac{-2015}{4028}\)
Ta thấy \(\frac{-2015}{4028}< \frac{-1}{2}\) \(\Rightarrow A< B\)
Vì \(\frac{1}{2^2}>0\)
............
\(\frac{1}{2014^2}>0\)
=> A = \(\left(\frac{1}{2^2}\right)\left(\frac{1}{3^2}\right)...\left(\frac{1}{2014^2}\right)>0\)
B = \(-\frac{1}{2}
\(E=\left(1\frac{1}{2}xy^2\right).\left(1\frac{1}{3}x^2y^3\right).\left(1\frac{1}{4}x^3y^4\right).....\left(1\frac{1}{2014}x^{2013}y^{2014}\right)\)
\(E=\left(\frac{3}{2}xy^2\right).\left(\frac{4}{3}x^2y^3\right).\left(\frac{5}{4}x^3y^4\right).....\left(\frac{2015}{2014}x^{2013}y^{2014}\right)\)
\(E=\left(\frac{3}{2}.\frac{4}{3}.\frac{5}{4}......\frac{2015}{2014}\right).\left(x.x^2.x^3......x^{2013}\right).\left(y^2y^3.y^4......y^{2014}\right)\)
\(E=\left(\frac{3.4.5......2015}{2.3.4......2014}\right).\left(x^{1+2+3+....+2013}\right).\left(y^{2+3+4+....+2014}\right)\)
\(E=\frac{2015}{2}.x^{2027091}.y^{2029104}\)
Đến đây tự kết luận nhé(hệ số;phần biến;đơn thức)
\(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{100^2}-1\right)\)( có 2013 thừa số )
\(A=\left(-\frac{3}{2^2}\right).\left(-\frac{8}{3^2}\right).\left(-\frac{15}{4^2}\right).....\left(-\frac{\text{4056196}}{2014^2}\right)\)
\(-A=\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{4056196}{2014^2}=\frac{1.3.2.4.3.5....2013.2015}{2.2.3.3.4.4.....2014.2014}\)
\(-A=\frac{\left(1.2.3...2013\right).\left(3.4.5.6...2015\right)}{\left(2.3.4.5....2014\right).\left(2.3.4.5...2014\right)}=\frac{1.2015}{2.2014}=\frac{2015}{4028}\)
\(A=-\frac{2015}{4028}\)
Vậy.....
-A=(\(1-\frac{1}{2^2}\)) . (\(1-\frac{1}{3^2}\))......(\(1-\frac{1}{2014^2}\))
-A= \(\frac{3}{4}\). \(\frac{8}{9}\). ...... \(\frac{4056195}{4056196}\)
-A= \(\frac{1.3.2.4.......2013.2015}{2.2.3.3.......2.14.2014}\)
-A= \(\frac{\left(1.2.3...2013\right)\left(3.4.5...2015\right)}{\left(2.3.4...2014\right)\left(2.3.4...2014\right)}\)
-A= \(\frac{2015}{2014.2}\)
-A=\(\frac{2015}{4028}\)
Ta có : \(\frac{1}{n^2}-1=\frac{1-n^2}{n^2}=\frac{\left(1-n\right)\left(1+1\right)}{n^2}\)
Áp dụng :
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{2014^2}-1\right)\)
\(=\frac{-1.3}{2.2}.\frac{-2.4}{3.3}.\frac{-3.5}{4.4}.....\frac{-2013.2015}{2014.2014}\)
\(=\frac{-\left(1.2.3...2013\right)\left(3.4.5....2015\right)}{\left(2.3.4.....2014\right)\left(2.3.4......2014\right)}=\frac{-2015}{2014.2}=\frac{-2015}{4028}\)
Sr còn thiếu
\(A=-\frac{2015}{4028}< \frac{-2014}{4028}=-\frac{1}{2}\)
Vậy \(A< B\)
\(y=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)....\left(\frac{1}{2014^2}-1\right)\)
\(y=\left(\frac{-1.3}{2.2}\right)\left(\frac{-2.4}{3.3}\right)....\left(\frac{-2013.2015}{2014.2014}\right)\)
\(y=-\left(\frac{1.2....2013.3.4...2015}{2.3....2014.2.3....2014}\right)\)
\(y=-\left(\frac{2015}{2014.2}\right)\)
\(y=\frac{-2015}{4028}\)
\(x=\frac{-1}{2}=\frac{-2014}{4028}\)
Vì \(\frac{-2015}{4028}