Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chứng minh \(\frac{3}{2}\ge\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\)
ta có \(\left(x-1\right)^2\ge0\Leftrightarrow x^2+1\ge2x\Leftrightarrow\frac{2x}{1+x^2}\le1\)
\(\left(y-1\right)^2\ge0\Leftrightarrow y^2+1\ge2y\Leftrightarrow\frac{2y}{1+y^2}\le1\)
\(\left(z-1\right)^2\ge0\Leftrightarrow z^2+1\ge2z\Leftrightarrow\frac{2z}{1+z^2}\le1\)
\(\Rightarrow\frac{2x}{1+x^2}+\frac{2y}{1+y^2}+\frac{2x}{1+z^2}\le3\Leftrightarrow\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\le\frac{3}{2}\)
chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{2}\)
áp dụng bất đẳng thức Cauchy ta có:
\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge3\sqrt[3]{\frac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}=\frac{3}{\sqrt{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}\)
ta lại có \(\frac{\left(1+x\right)\left(1+y\right)\left(1+z\right)}{3}\ge\sqrt[3]{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
vậy \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{\frac{\left(1+x\right)+\left(1+y\right)+\left(1+z\right)}{3}}=\frac{3}{2}\)
kết hợp ta có \(\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\le\frac{3}{2}\le\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\)
\(\sqrt{xy}\le\frac{\left|x\right|+\left|y\right|}{2}\)
\(\Leftrightarrow\)\(\left|x\right|+\left|y\right|\ge2\sqrt{xy}\)
\(\Leftrightarrow\)\(x+y\ge2\sqrt{xy}\) ( vì \(x,y>0\) )
\(\Leftrightarrow\)\(x-2\sqrt{xy}+y=0\)
\(\Leftrightarrow\)\(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\) ( luôn đúng với mọi x, y )
Vậy \(\sqrt{xy}\le\frac{\left|x\right|+\left|y\right|}{2}\)
Chúc bạn học tốt ~
\(\left|x\right|\ge0\); \(\left|y\right|\ge0\) Áp dụng bất đặng thức Cauchy cho hai số không âm:
\(\left|x\right|+\left|y\right|\ge2\sqrt{\left|x\right|\left|y\right|}=2\sqrt{xy}\)Vì xy>0
Suy ra điều cần chứng minh
\(a,\)\(x+x+2x=164\)
\(\Rightarrow4x=164\)
\(\Rightarrow x=41\)
C1: \(\left(\frac{3}{5}+\frac{4}{9}\right)\cdot\frac{3}{8}=\frac{47}{45}\cdot\frac{3}{8}=\frac{141}{360}=\frac{47}{120}\)
C2: \(\left(\frac{3}{5}+\frac{4}{9}\right)\cdot\frac{3}{8}=\frac{3}{5}\cdot\frac{3}{8}+\frac{4}{9}\cdot\frac{3}{8}=\frac{9}{40}+\frac{12}{72}=\frac{47}{120}\)
Công thức:
\(y=\frac{1}{x^2+\sqrt{x}}\)
\(y=\frac{1}{x^2+\sqrt{x}}\) cái này đâu phải toán nhỉ???????????