Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\left|5x+\frac{3}{4}\right|-\frac{5}{4}=2\)
\(\left|5x+\frac{3}{4}\right|=\frac{13}{4}\)
- / \(5x+\frac{3}{4}=\frac{13}{4}\)
\(5x=\frac{5}{2}\)
\(x=\frac{1}{2}\) - / \(5x+\frac{3}{4}=-\frac{13}{4}\)
\(5x=-4\)
\(x=-\frac{4}{5}\)
\(\Rightarrow x=\left\{\frac{1}{2};-\frac{4}{5}\right\}\)
b/\(\frac{3}{2}-\left|\frac{1}{2}x+1\right|=\frac{1}{4}\)
\(\left|\frac{1}{2}x+1\right|=\frac{5}{4}\)
1/\(\frac{1}{2}x+1=\frac{5}{4}\)
\(\frac{1}{2}x=\frac{1}{4}\)
\(x=\frac{1}{2}\)
2/\(\frac{1}{2}x+1=-\frac{5}{4}\)
\(\frac{1}{2}x=-\frac{9}{4}\)
\(x=-\frac{9}{2}\)
\(\Rightarrow x=\left\{\frac{1}{2};-\frac{9}{2}\right\}\)
A = 1 - 1/2014 = 2013/2014
Mà 2013/2014 > 7/12 nên A > 7/12
Làm tắt thông cảm
\(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)
\(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)
\(A=2-\frac{1}{2^{2012}}\)
k nha
Câu 1 :
\(x:\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{101.103}\right)=1\)
\(=>x:\left[\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{101}-\frac{1}{103}\right)\right]\) \(=1\)
\(=>x:\left[\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{103}\right)\right]=1\)
\(=>\) \(x:\frac{51}{103}=1\)
\(=>x=1.\frac{51}{103}=\frac{51}{103}\)
Câu 2 :
\(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{12.13}\right).x=2\)
\(=>\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\right).x=2\)
\(=>\left(\frac{1}{1}-\frac{1}{12}\right).x=2\)
\(=>\frac{11}{12}.x=2\)
\(=>x=2:\frac{11}{12}\)
\(=>x=\frac{24}{11}\)
a) \(x-\frac{4}{5}=\frac{5}{7}\)
\(x=\frac{5}{7}+\frac{4}{5}=\frac{53}{35}\)
b) \(5x=-\frac{1}{5}\)
\(x=-\frac{1}{5}:5=-\frac{1}{25}\)
c) \(\frac{5}{3}-x=7+\frac{4}{5}\)
\(\frac{5}{3}-x=\frac{39}{5}\)
\(x=\frac{5}{3}-\frac{39}{5}=-\frac{92}{15}\)
d) \(-\frac{5}{11}+2x=\frac{7}{22}\)
\(2x=\frac{7}{22}+\frac{5}{11}\)
\(2x=\frac{17}{22}\)
\(x=\frac{17}{22}:2\)
\(x=\frac{17}{44}\)
\(x=-\frac{1}{5}:5\)
NÈ BẠN!!!
a) \(x-\frac{4}{5}=\frac{5}{7}\)
\(x=\frac{5}{7}+\frac{4}{5}=\frac{25}{35}+\frac{28}{35}=\frac{53}{35}\)
b) \(5x=-\frac{1}{5}+\frac{11}{5}\)
\(5x=2\)
\(x=\frac{2}{5}\)
c)\(\frac{5}{3}-x=7\)
\(x=\frac{5}{3}-7=\frac{5}{3}-\frac{21}{3}=-\frac{16}{3}\)
d) \(-\frac{5}{11}+2x=\frac{7}{22}\)
\(2x=\frac{7}{22}-\frac{-5}{11}=\frac{7}{22}-\frac{-10}{22}=\frac{17}{22}\)
\(x=\frac{17}{22}:2=\frac{17}{22}\cdot\frac{1}{2}=\frac{17}{44}\)
K CHO MÌNH NHA!!!
Ta có :
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2013^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2012.2013}\)\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2012}-\frac{1}{2013}=1-\frac{1}{2013}< 1\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2013^2}< 1\)
Đặt: \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2013^2}\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
.....
\(\frac{1}{2013^2}< \frac{1}{2012.2013}\)
Nên \(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2012.2013}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\)
\(=1-\frac{1}{2013}< 1\)
Vậy \(A< 1\left(ĐPCM\right)\)
tính Y ak e,nếu tính Y thì a giúp dc
Y=
1đề bài là gì?