Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\dfrac{\left(x+1\right)}{\sqrt{1-x}}\)
\(y^2=\dfrac{\left(x+1\right)^2}{1-x}\)
\(y'=\dfrac{2\left(x+1\right)\left(1-x\right)+\left(x+1\right)^2}{2.\left(1-x\right)^2.\dfrac{\left(x+1\right)}{\sqrt{1-x}}}\)
a : \(y=\dfrac{1}{\left(x^2-x+1\right)^5}=\left(x^2-x+1\right)^{-5}\)
\(\Rightarrow y'=-5\left(2x-1\right)\left(x^2-x+1\right)^{-6}=\dfrac{5-10x}{\left(x^2-x+1\right)^6}\)
b: \(y=x^2+x^{\dfrac{3}{2}}+1\Rightarrow y'=2x+\dfrac{3}{2}x^{\dfrac{1}{2}}=2x+\dfrac{3\sqrt{x}}{2}\)
\(y=\sqrt{\dfrac{x^2+1}{x}}=\left(\dfrac{x^2+1}{x}\right)^{\dfrac{1}{2}}\Rightarrow y'=\dfrac{1}{2}\left(\dfrac{x^2+1}{x}\right)'\left(\dfrac{x^2+1}{x}\right)^{\dfrac{-1}{2}}=\dfrac{x^2-1}{2x^2}\times\dfrac{1}{\sqrt{\dfrac{x^2+1}{x}}}=\dfrac{x^2-1}{2x^2\sqrt{\dfrac{x^2+1}{x}}}\)
Đề bài yêu cầu điều gì nhỉ?