K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2020

2.

\(-x^3+3x^2=k\)

\(y=-x^3+3x^2\)

\(y'=-3x^2+6x\)

\(y'=0\Leftrightarrow x=0,x=2\)

Kẻ bảng biến thiên.

Đường thẳng y = k cắt đồ thị hàm số \(\Leftrightarrow0< k< 2\)

NV
15 tháng 10 2020

1.

ĐKXĐ: \(\left\{{}\begin{matrix}0\le x\le1\\x\ge2\end{matrix}\right.\)

\(\lim\limits_{x\rightarrow1^-}\frac{2x+3\sqrt{x}+1}{\sqrt{x^2-3x+2}}=\infty\Rightarrow x=1\) là TCĐ

\(\lim\limits_{x\rightarrow2^+}\frac{2x+3\sqrt{x}+1}{\sqrt{x^2-3x+2}}=\infty\Rightarrow x=2\) là TCĐ

\(\lim\limits_{x\rightarrow+\infty}\frac{2x+3\sqrt{x}+1}{\sqrt{x^2-3x+2}}=2\Rightarrow y=2\) là TCN

Vậy ĐTHS có 3 tiệm cận

3.

\(\lim\limits_{x\rightarrow0}y=\infty\Rightarrow x=0\) là TCĐ

\(\lim\limits_{x\rightarrow-\infty}\frac{\sqrt{x^2+2x+9}+\sqrt{1-x}}{x}=-1\Rightarrow y=-1\) là TCN

ĐTHS có 2 tiệm cận

4.

\(\lim\limits_{x\rightarrow-2^+}y=\infty\Rightarrow x=-2\) là TCĐ

ĐTHS có 1 TCĐ (\(x=-3\) ko thuộc TXĐ của hàm số nên đó ko phải là TCĐ)

NV
7 tháng 8 2021

\(2x+m=0\Rightarrow x=-\dfrac{m}{2}\)

Hàm có tiệm cận đứng đi qua M khi:

\(\left\{{}\begin{matrix}-\dfrac{m}{2}=-1\\\dfrac{1}{m}\ne-\dfrac{m}{2}\end{matrix}\right.\) \(\Leftrightarrow m=2\)

NV
6 tháng 9 2021

\(\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt{x+3}-2\right)sinx}{x^2-x}=\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt{x+3}-2\right)}{x-1}.\dfrac{sinx}{x}=\dfrac{\sqrt{3}-1}{-1}.1=1-\sqrt{3}\) hữu hạn

\(\lim\limits_{x\rightarrow1}\dfrac{\left(\sqrt{x+3}-2\right)sinx}{x^2-x}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)sinx}{\left(x-1\right)x\left(\sqrt{x+3}+2\right)}=\lim\limits_{x\rightarrow1}\dfrac{sinx}{x\left(\sqrt{x+3}+2\right)}=\dfrac{sin1}{4}\) hữu hạn

\(\Rightarrow\) Đồ thị hàm số không có tiệm cận đứng

Hay số tiệm cận đứng là 0

NV
2 tháng 9 2021

\(\lim\limits_{x\rightarrow-\infty}\dfrac{x+1}{\left(m^2+1\right)\sqrt{x^2-4}}=\lim\limits_{x\rightarrow-\infty}\dfrac{1+\dfrac{1}{x}}{-\left(m^2+1\right)\sqrt[]{1-\dfrac{4}{x^2}}}=-\dfrac{1}{m^2+1}\)

\(\lim\limits_{x\rightarrow+\infty}\dfrac{x+1}{\left(m^2+1\right)\sqrt{x^2-4}}=\dfrac{1}{m^2+1}\)

\(\Rightarrow\) ĐTHS có 2 tiệm cận ngang

\(\lim\limits_{x\rightarrow2^+}\dfrac{x+1}{\left(m^2+1\right)\sqrt{x^2-4}}=\dfrac{3}{0}=\infty\)

\(\lim\limits_{x\rightarrow-2^-}\dfrac{x+1}{\left(m^2+1\right)\sqrt{x^2-4}}=\dfrac{-1}{0}=\infty\)

\(\Rightarrow\) ĐTHS có 2 tiệm cận đứng

Vậy ĐTHS có 4 tiệm cận

4 tháng 9 2021

tại sao nơi chỗ lim\(_{x->2^+}\) và limx->-2-    ở dưới mẫu lại bằng 0 vậy  ạ?

NV
13 tháng 7 2021

\(y=\dfrac{\left(x-1\right)\left(x-2\right)sinx}{x\left(x-2\right)\left(x+2\right)}\)

\(\lim\limits_{x\rightarrow0}\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}.\dfrac{sinx}{x}=\dfrac{2}{-4}.1=-\dfrac{1}{2}\) hữu hạn \(\Rightarrow x=0\) ko phải TCĐ

Tương tự: \(\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x-1\right)sinx}{\left(x-2\right)\left(x+2\right)x}=\dfrac{1.sin2}{8}\) hữu hạn

\(\lim\limits_{x\rightarrow-2}\dfrac{\left(x-2\right)\left(x-1\right)sinx}{\left(x-2\right)\left(x+2\right)x}=\dfrac{12sin\left(-2\right)}{0}=-\infty\)

\(\Rightarrow x=-2\) là TCĐ duy nhất của ĐTHS

NV
7 tháng 8 2021

Hàm không có tiệm cận đứng khi: \(x^2-\left(2m+3\right)x+2\left(m-1\right)=0\) có nghiệm \(x=2\)

\(\Rightarrow4-2\left(2m+3\right)+2\left(m-1\right)=0\)

\(\Rightarrow m=-2\)

27 tháng 6 2021

1, y' = \(\dfrac{m^2-9}{\left(3x-m\right)^2}\)

ycbt <=> \(\left\{{}\begin{matrix}m^2-9< 0\\\dfrac{m}{-3}\ne x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3< m< 3\\m\ge0\end{matrix}\right.\)

\(\Leftrightarrow0\le m\le3\)

27 tháng 6 2021

bài 2,3 đợi mình tí, gõ máy mất thời gian quá nếu mà được thì tối mình chụp lại cho