\(\infty\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2015

Vô hạn                                 

28 tháng 7 2015

ở trong yugioh kí hiệu đó là vô hạn(điểm tấn công or phòng thủ)

19 tháng 4 2019

a) xét tam giác AOD và tam giác BOC ta có :

góc OAD = góc BOC ( góc CAD= góc DBC )

Góc AOD = góc BOC ( 2 góc đối đỉnh ) 

=> tam giác AOD đồng dạng với tam giác BOC ( góc - góc) 

b) vì tam giác AOD đồng dạng cới tam giác BOC (chứng minh trên )

=> AO/BO =OD/OC <=> OA/OD= OB/OC 

c ) xét tam giác AOB và tam giác DOC ta có :

Góc AOB = góc DOC ( 2 góc đối đỉnh ) 

mà AO / OB=OB/OC ( chứng minh trên )

=> tam giác AOB đồng dạng với tam giác DOC ( cạnh -góc -cạnh )

27 tháng 12 2015

mình chẳng hiểu  gì cả

27 tháng 12 2015

Bài 3:

Ta có:

\(81^8-1=\left(9^2\right)^8-1=\left[\left(3^2\right)^2\right]^8-1=3^{32}-1\)

\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

Do đó: 

\(A=3^4-1=80\)

AH
Akai Haruma
Giáo viên
20 tháng 3 2019

Lời giải:

a)

Xét tam giác $ABD$ và $ACE$ có:

\(\widehat{A}\) chung

\(\widehat{ADB}=\widehat{AEC}=90^0\)

\(\Rightarrow \triangle ABD\sim \triangle ACE(g.g)\Rightarrow \frac{AB}{AD}=\frac{AC}{AE}\) hay \(\frac{AD}{AE}=\frac{AB}{AC}\)

Xét tam giác $ADE$ và $ABC$ có:

\(\widehat{A}\) chung

\(\frac{AD}{AE}=\frac{AB}{AC}\) (cmt)

\(\Rightarrow \triangle ADE\sim \triangle ABC(c.g.c)\)

b)

\(EG\perp AC; BD\perp AC\Rightarrow EG\parallel BD\)

\(DF\perp AB, CE\perp AB\Rightarrow DF\parallel CE\)

Do đó áp dụng định lý Ta-let ta có:

\(\left\{\begin{matrix} \frac{AG}{AD}=\frac{AE}{AB}\\ \frac{AF}{AE}=\frac{AD}{AC}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} AG=\frac{AE.AD}{AB}\\ AF=\frac{AD.AE}{AC}\end{matrix}\right.\)

\(\Rightarrow \frac{AG}{AF}=\frac{AC}{AB}\Rightarrow \frac{AG}{AC}=\frac{AF}{AB}\). Theo định lý Ta-let đảo suy ra \(FG\parallel BC\) (đpcm)

AH
Akai Haruma
Giáo viên
20 tháng 3 2019

Hình vẽ:
Ôn tập: Tam giác đồng dạng

2 tháng 8 2018

AI GIAI DUOC MK TK CHO

17 tháng 4 2019

Ôn tập cuối năm phần hình họcÔn tập cuối năm phần hình học=> Đpcm

19 tháng 4 2019

Thank bn nha ❤❤

a: Xét ΔADC và ΔBCD có

AD=BC

DC chung

AC=BD

DO đó: ΔADC=ΔBCD
b: Xét ΔEDC có AB//CD

nên EA/AD=EB/BC

mà AD=BC

nên EA=EB

=>ED=EC

Ta có: ΔEAB cân tại E

mà EI là đường trung tuyến

nên EI vuông góc với BA(1)

Ta có: ΔEDC cân tại E

mà EJ là đường trung tuyến

nên EJ vuông góc với CD

=>EJ vuông góc với AB(2)

Ta có: ΔABD=ΔBAC

nên góc OAB=góc OBA

=>ΔOAB cân tại O

=>OA=OB

mà IA=IB

nên OI la trung trực của BA

=>OI vuông góc với AB(3)

OA+OC=AC

OB+OD=BD

mà OA=OB; AC=BD

nên OC=OD

mà JD=JC

nên OJ là trung trực của CD

=>OJ vuông góc với CD

hay JO vuôg góc với AB(4)

từ (1), (2), (3) và (4) suy ra E,I,O,J thẳng hàng