K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2021

Để hàm số đồng biến khi \(-m>0\Leftrightarrow m< 0\)

Để hàm số nghịch biến khi \(-m< 0\Leftrightarrow m>0\)

25 tháng 7 2021

-m^2 k phải -m đâu ạ

AH
Akai Haruma
Giáo viên
29 tháng 6 2024

Lời giải:

Để hàm số là hàm bậc nhất thì $1-m^2\neq 0$

$\Leftrightarrow m^2\neq 1\Leftrightarrow m\neq \pm 1$

b.

Để hàm nghịch biến thì $1-m^2<0$

$\Leftrightarrow (1-m)(1+m)<0$

$\Leftrightarrow m> 1$ hoặc $m< -1$

Để hàm đồng biến thì $1-m^2>0$

$\Leftrightarrow (1-m)(1+m)>0$

$\Leftrightarrow -1< m< 1$

22 tháng 11 2015

a.a=m2+1>0 voi moi x

=>ham so tren la ham so bac nhat

b. a>0=>ham so dong bien

 

19 tháng 4 2020

đồng biến nha bạn

Học tốt

19 tháng 4 2020

nhầm nghịch biến nha

17 tháng 1 2021

a) Khi \(x>0\)thì hàm số đã cho đồng biến \(\Leftrightarrow3m-2>0\)

\(\Leftrightarrow3m>2\)\(\Leftrightarrow m>\frac{2}{3}\)

b) Khi \(x>0\)thì hàm số đã cho nghịch biến \(\Leftrightarrow3m-2< 0\)

\(\Leftrightarrow3m< 2\)\(\Leftrightarrow m< \frac{2}{3}\)

21 tháng 8 2016

cậu xem đúng thì k  y' = x^2 -(2m+1)x+3m+2. Để hs nghịch biến trong 1 khoản  có độ dài > 1 thì y'=0 phải có 2 nghiệm phân biệt x1, x2  sao cho |x2-x1| >1  (lúc này thì y' =<0 trong khoản 2 nghiệm [x1, x2] tức là y nghịch biến trong đoạn [x1,x2])
<=> có hệ
(1) y'=0 có 2 nghiệm x1, x2
(2) |x2-x1| > 1 <=> (x2-x1)^2 -1>0 <=> (x1+x2)^2 - 4.x1.x2 -1 >0

mk mới hok lớp 8 nên cái tay bó tay!!! ^^

346456454574575675756768797835153453443457657656565

31 tháng 10 2019

a) m-m +2#0

b) m​2​ - m+2<0

C) m​2 - mm +2>0

Bài 1: 

a: Để hàm số đồng biến khi x>0 thì m-1>0

hay m>1

b: Để hàm số nghịch biến khi x>0 thì 3-m<0

=>m>3

c: Để hàm số nghịch biến khi x>0 thì m(m-1)<0

hay 0<m<1

19 tháng 2 2022

a, đồng biến khi m - 1 > 0 <=> m > 1 

b, nghịch biến khi 3 - m < 0 <=> m > 3 

c, nghịch biến khi m^2 - m < 0 <=> m(m-1) < 0 

Ta có m - 1 < m 

\(\left\{{}\begin{matrix}m-1< 0\\m>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>0\end{matrix}\right.\Leftrightarrow0< m< 1\)