K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2015

ta có:

(x+y+z)2=x2+y2+z2+2xy+2yz+2xz

<=>(x+y+z)2=x2+y2+z2+2.(xy+yz+xz)

thay x+y+z=0 và xy+yz+xz=0 ta được:

02=x2+y2+z2=2.0

<=>x2+y2+z2=0

<=>x=y=z=0

Vậy khi x+y+z=xy+yz+xz=0 thì x=y=z=0

5 tháng 6 2019

#)Góp ý :

   Mời bạn tham khảo :

   http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/

   Mình sẽ gửi link này về chat riêng cho bạn !

6 tháng 6 2019

Tham khảo qua đây nè :

http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%Ân-b%C3%ACnh-thu%E1%BA%ADn-2016-2017

tk cho mk nhé

NV
11 tháng 12 2018

Để M xác định thì \(x,y,z\ne0\)

\(xy+xz+yz=0\Rightarrow\left\{{}\begin{matrix}\dfrac{xy}{z}+x+y=0\\\dfrac{xz}{y}+x+z=0\\\dfrac{yz}{x}+y+z=0\end{matrix}\right.\)

Cộng vế với vế ta được:

\(\dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{yz}{x}+2\left(x+y+z\right)=0\)

\(\Leftrightarrow M+2.\left(-1\right)=0\Rightarrow M=2\)

12 tháng 12 2018

Ta có :

\(xy+yz+xz=0\\ \Rightarrow\left[{}\begin{matrix}xy=-xz-yz=-z\left(x+y\right)\\yz=-xy-xz=-x\left(y+z\right)\\xz=-xy-yz=-y\left(x+z\right)\end{matrix}\right.\)

\(M=\dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{yz}{x}=\dfrac{-z\left(x+y\right)}{z}+\dfrac{-y\left(x+z\right)}{y}+\dfrac{-x\left(y+z\right)}{x}\\ =-\left(x+y\right)-\left(x+z\right)-\left(y+z\right)=-x-y-x-z-y-z\\ =-2\left(x+y+z\right)=\left(-2\right)\cdot\left(-1\right)=2\)

\(\Rightarrow M=2\)

NV
2 tháng 3 2019

Do \(xyz\ne0\) ta có:

\(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}=0\Leftrightarrow xyz\left(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}\right)=0\Leftrightarrow x+y+z=0\)

Lại có: \(x^3+y^3+z^3=x^3+y^3+3x^2y+3y^2x-3xy\left(x+y\right)+z^3\)

\(=\left(x+y\right)^3+z^3-3xy\left(-z\right)=\left(x+y+z\right)\left(\left(x+y\right)^2-\left(x+y\right)z+z^2\right)+3xyz=3xyz\)

Vậy nếu \(x+y+z=0\) thì \(x^3+y^3+z^3=3xyz\)

\(P=\dfrac{x^2}{yz}+\dfrac{y^2}{xz}+\dfrac{z^2}{xy}=\dfrac{x^3}{xyz}+\dfrac{y^3}{xyz}+\dfrac{z^3}{xyz}=\dfrac{x^3+y^3+z^3}{xyz}=\dfrac{3xyz}{xyz}=3\)

AH
Akai Haruma
Giáo viên
23 tháng 8 2017

Lời giải:

Ta có: \(\left\{\begin{matrix} xy+x+y=3\\ yz+y+z=8\\ zx+z+x=15\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x+1)(y+1)=4\\ (y+1)(z+1)=9\\ (z+1)(x+1)=16\end{matrix}\right.(1)\)

Nhân 3 vế với nhau:

\(\Rightarrow [(x+1)(y+1)(z+1)]^2=4.9.16\)

\(\Leftrightarrow (x+1)(y+1)(z+1)=\pm 24\)

Nếu \((x+1)(y+1)(z+1)=24(2)\)

Từ \((1),(2)\Rightarrow \left\{\begin{matrix} z+1=6\\ x+1=\frac{8}{3}\\ y+1=\frac{3}{2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=\frac{5}{3}\\ y=\frac{1}{2}\\ z=5\end{matrix}\right.\)

Do đó, \(P=x+y+z=\frac{43}{6}\)

Nếu 

\((x+1)(y+1)(z+1)=-24(3)\)

Từ $(1);(3)$ suy ra \(\left\{\begin{matrix} z+1=-6\\ x+1=\frac{-8}{3}\\ y+1=\frac{-3}{2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} z=-7\\ x=-\frac{11}{3}\\ y=\frac{-5}{2}\end{matrix}\right.\)

Do đó, \(P=x+y+z=-\frac{79}{6}\)

 

14 tháng 4 2018

Thưa thầy. Hình như phải xét 2 trường hợp chứ ạ?

25 tháng 7 2017

 

 

Câu 1

X^3+Y3+z^3-3xyz = (x+y+z)(x^2+y^2+z^2 -xy-yz-zx) =0. Nên chỉ có 2 TH

a) TH1: x+y+z = 0 --> x+y=-z; y+z=-x; z+x=-y (1):

Biến đổi P= (x+y)(y+z)(z+x)/xyz (2). Thay (1) vào (2) được P = -xyz/xyz = -1

b) TH2: x^2+y^2+z^2 -xy-yz-zx --> x=y=z. Thay vào biểu thức của P được P = (1+1)(1+1)(1+1)=8

Câu 3 

x^2+y^2 >= 2xy

y^2+z^2 >= 2yz

z^2+x^2>=2xz

Cộng 2 vế với vế cuae 3 BDT trên được 2(x^2+y^2+x^2)>=2(xy+yz+zx) --> x^2+y^2+x^2>= xy+yz+zx (1) Dấu = xảy ra khi x=y=z

Mặt khác A=(x+y+z)^2=x^2+y^2+x^2+2(xy+yz+zx)=9. Theo (1) A>=xy+yz+zx+2(xy+yz+zx) = 3(xy+yz+zx)

nên 9>=3(xy+yz+zx) --> 3>=xy+yz+zx. Vậy giá trị lớn nhất của P là 9. Khi đó x=y=z=1

Cho L-I-K-E                        N-H-A+....

31 tháng 7 2017

ráng k cho mik đi mikđang bị âm

9 tháng 9 2017

\(x+y+z=x^2+y^2+z^2=1\)

\(\Leftrightarrow\left(x+y+z\right)^2=x^2+y^2+z^2=1\)

\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=x^2+y^2+z^2=1\)

\(\Rightarrow\left(x^2+y^2+z^2+2xy+2yz+2xz\right)-\left(x^2+y^2+z^2\right)=1-1=0\)

\(\Leftrightarrow2xy+2yz+2xz=0\)

\(\Rightarrow xy+yz+xz=0\)(đpcm)