Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=1!+2.2!+3.3!+...+k.k!\)
\(=1!+\left(3-1\right)2!+\left(4-1\right)3!+...+\left(k+1-1\right)k!\)
\(=1!+3!-2!+4!-3!+...+\left(k+1\right)!-k!\)
\(=\left(k+1\right)!-1\)
\(C=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{n-1}{n!}\)
\(=\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+\frac{4}{4!}-\frac{1}{4!}+...+\frac{n}{n!}-\frac{1}{n!}\)
\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)
\(=1-\frac{1}{n!}\)
2.
Với \(n=0\Rightarrow1\ge\frac{1}{2}\) đúng
Với \(n=1\Rightarrow1\ge1\) đúng
Giả sử BĐT đúng với \(n=k\ge2\) hay \(k!\ge2^{k-1}\)
Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay \(\left(k+1\right)!\ge2^k\)
Thật vậy, ta có:
\(\left(k+1\right)!=k!\left(k+1\right)\ge2^{k-1}.\left(k+1\right)>2^{k-1}.2=2^k\) (đpcm)
Ta có: \(VT=x-\dfrac{xyz}{yz+1}+y-\dfrac{xyz}{xz+1}+z-\dfrac{xyz}{xy+1}\)
\(=x+y+z-xyz\left(\dfrac{1}{xy+1}+\dfrac{1}{yz+1}+\dfrac{1}{xz+1}\right)\)
Ta sẽ chứng minh BĐt sau :
\(xyz\left(\dfrac{1}{xy+1}+\dfrac{1}{yz+1}+\dfrac{1}{xz+1}\right)\ge xyz\)
hay \(xyz\left(\dfrac{1}{xy+1}+\dfrac{1}{yz+1}+\dfrac{1}{xz+1}-1\right)\ge0\)
Mà đây là 1 điều luôn đúng vì \(\dfrac{1}{xy+1}+\dfrac{1}{yz+1}+\dfrac{1}{xz+1}\ge\dfrac{9}{xy+yz+xz+3}\ge\dfrac{9}{x^2+y^2+z^2+3}>1\) và \(xyz\ge0\)
Do đó \(VT\le x+y+z-xyz=x\left(1-yz\right)+y+z\)(*)
Áp dụng BĐt bunyakovsky:
\(VT^2=\left[x\left(1-yz\right)+\left(y+z\right).1\right]^2\le\left[x^2+\left(y+z\right)^2\right]\left[1+\left(1-yz\right)^2\right]\)\(=\left(2+2yz\right)\left(y^2z^2-2yz+2\right)=4+2y^2z^2\left(yz-1\right)\le4\)
( do \(yz\le\dfrac{y^2+z^2}{2}\le\dfrac{x^2+y^2+z^2}{2}=1\))
\(\Rightarrow VT\le2\) (đpcm)
Dấu = xảy ra khi \(x=0;y=z=1\) cùng các hoán vị
P/s: Từ chỗ (*) là 1 BĐT có nhiều cách chứng minh .
\(VT=x^3+y^3+z^3=\frac{x^4}{x}+\frac{y^4}{y}+\frac{z^4}{z}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x+y+z}\ge\frac{\left(x^2+y^2+z^2\right)^2}{\sqrt{3\left(x^2+y^2+z^2\right)}}=3\)
Vậy BĐT được chứng minh . Dấu = xảy ra khi \(a=b=c=1\)
Áp dụng BĐT AM-GM ta có:
\(\dfrac{x^4}{y+3z}+\dfrac{y+3z}{16}+\dfrac{1}{4}+\dfrac{1}{4}\ge4\sqrt[4]{\dfrac{x^4}{y+3z}\cdot\dfrac{y+3z}{16}\cdot\dfrac{1}{4}\cdot\dfrac{1}{4}}=x\)
\(\Rightarrow\dfrac{x^4}{y+3z}\ge x-\dfrac{y+3z}{16}-\dfrac{1}{2}\)
Tương tự cho 2 BĐT còn lại:
\(\dfrac{y^4}{z+3x}\ge y-\dfrac{z+3x}{16}-\dfrac{1}{2};\dfrac{z^4}{x+3y}\ge z-\dfrac{x+3y}{16}-\dfrac{1}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{3}{4}\left(x+y+z\right)-\dfrac{3}{2}\ge\dfrac{3}{4}\cdot3-\dfrac{3}{2}=\dfrac{3}{4}\)
Đẳng thức xảy ra khi \(x=y=z=1\)
Cách khác:
\(\dfrac{x^4}{y+3z}+\dfrac{y^4}{z+3x}+\dfrac{z^4}{x+3y}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{4\left(x+y+z\right)}\)
\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{4.\sqrt{3\left(x^2+y^2+z^2\right)}}=\dfrac{\sqrt{\left(x^2+y^2+z^2\right)^3}}{4\sqrt{3}}\)
\(\ge\dfrac{\sqrt{\left(xy+yz+zx\right)^3}}{4\sqrt{3}}\ge\dfrac{3\sqrt{3}}{4\sqrt{3}}=\dfrac{3}{4}\)
Dấu = xảy ra khi \(x=y=z=1\)
cái này mà là toán lớp 10 à ?? ?
Oh my god!
Nhìn đề mà méo hiểu gì đang xảy ra ở thế giới này!