K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2020

Ta có : \(\frac{x}{x^2-yz+2010}+\frac{y}{y^2-xz+2010}+\frac{z}{z^2-xy+2010}\)

\(=\frac{x^2}{x^3-xyz+2010x}+\frac{y^2}{y^3-xyz+2010y}+\frac{z^2}{z^3-xyz+2010z}\)

\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)}=\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+3\left(xy+yz+xz\right)\left(x+y+z\right)}\)

\(=\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3+3xy^2+3x^2y+3x^2z+3xz^2+3y^2z+3yz^2}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}\)

17 tháng 3 2020

trước tiên ta phải cm: \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\left(#\right)\left(\forall a,b,c\in R;x,y,z>0\right)\)

dấu = xảy ra khi zà chỉ khi\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

thật zậy , zới \(a,b\in R;x,y>0\)ta có \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\left(##\right)\left(a,b\in R;x,y>0\right)\)

\(\Leftrightarrow\left(a^2y+b^2x\right)\left(x+y\right)\ge xy\left(a+b\right)^2\Leftrightarrow\left(bx-ay\right)^2\ge0\)( luôn đúng )

 dấu = xảy ra khi zà chỉ khi\(\frac{a}{x}=\frac{b}{y}\)

* áp dụng bất đẳng thức (##) ta được 

\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

dấu = xảy ra khi zà chỉ khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)\

* áp dụng bất đẳng thức (#) ta có

vt = \(\frac{x^2}{x\left(x^2-yz+2010\right)}+\frac{y^2}{y\left(y^2-xz+2010\right)}+\frac{z^2}{z\left(z^2-xy+2010\right)}\)

   =\(\frac{x^2}{x\left(x^2-yz+2010\right)}+\frac{y^2}{y\left(y^2-xz+2010\right)}+\frac{z^2}{z\left(z^2-xy+2010\right)}\)

\(\ge\frac{\left(x+y+z\right)^3}{x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)}\left(1\right)\)

Lưu ý nhé : \(x\left(x^2-yz+2010\right)=x\left(x^2+xy+zx+1340\right)>0\)

                  \(y\left(y^2-xz+2010\right)>0\)

                  \(z\left(z^2-xy+2010\right)>0\)

Ta có \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

                                                      \(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3\left(xy+yz+xz\right)\right]\)

                                       do dó       \(x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)\)        \(\)

                                                     =\(\left(x+y+z\right)\left[\left(x+y+z\right)^2-3\left(xy+yz+zx\right)+2010\right]\)

                                                     =\(\left(x+y+z\right)^3\left(2\right)\)

Từ (1) zà (2) suy ra

vt \(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}\)

dấu = xảy ra khi zà chỉ khi \(x=y=z=\frac{\sqrt{2010}}{3}\)

18 tháng 3 2020

thí chủ có link koooooo

21 tháng 11 2016

Câu hỏi của NGUUYỄN NGỌC MINH - Toán lớp 9 - Học toán với OnlineMath

24 tháng 12 2017

tiếp tục câu 2,vì máy bị lỗi nên phải tách ra:

Ta có:\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

\(=\left(x+y+z\right)\left(\left(x+y+z\right)^2-3\left(xy+xz+yz\right)\right).\)

Dó đó:\(x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(\left(x+y+z\right)^2-3\left(xy+yz+xz\right)+2010\right)\)

\(=\left(x+y+z\right)^3.\)(2)

TỪ \(\left(1\right),\left(2\right)\)suy ra \(P\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}.\)

Dấu \(=\)xảy ra khi \(x=y=z=\frac{\sqrt{2010}}{3}\)

24 tháng 12 2017

2)Ta có:

\(x\left(x^2-yz+2010\right)=x\left(x^2+xy+xz+1340\right)>0\)

Tương tự ta có:\(y\left(y^2-xz+2010\right)>0,z\left(z^2-xy+2010\right)>0\)

Áp dụng svac-xơ ta có:

\(P=\frac{x^2}{x\left(x^2-yz+2010\right)}+\frac{y^2}{y\left(y^2-xz+2010\right)}+\frac{z^2}{z\left(z^2-xy+2010\right)}\)

\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)}.\)(1)

22 tháng 11 2017

\(x^2+y^2+z^2=xy+yz+xz\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)

\(\Rightarrow x-y=y-z=z-x=0\)\(\Rightarrow x=y=z\)

\(\Rightarrow x^{2010}+y^{2010}+z^{2010}=3x^{2010}=3^{2010}\)

\(\Rightarrow x^{2010}=\dfrac{3^{2010}}{3}=3^{2009}\Rightarrow x=\sqrt[2010]{3^{2009}}\)

\(\Rightarrow x=y=z=\sqrt[2010]{3^{2009}}\)

AH
Akai Haruma
Giáo viên
22 tháng 11 2017

Lời giải:

PT (1)

\(\Leftrightarrow x^2+y^2+z^2-(xy+yz+xz)=0\)

\(\Leftrightarrow 2(x^2+y^2+z^2)-2(xy+yz+xz)=0\)

\(\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0\)

Thấy rằng \((x-y)^2; (y-z)^2; (z-x)^2\geq 0\forall x,y,z\in\mathbb{R}\)

\(\Rightarrow (x-y)^2+(y-z)^2+(z-x)^2\geq 0\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} (x-y)^2=0\\ (y-z)^2=0\\ (z-x)^2=0\end{matrix}\right.\Leftrightarrow x=y=z\)

Thay vào PT (2)

\(\Leftrightarrow x^{2010}+x^{2010}+x^{2010}=3^{2010}\)

\(\Leftrightarrow 3.x^{2010}=3^{2010}\Leftrightarrow x^{2010}=3^{2009}\)

\(\Leftrightarrow x=\sqrt[2010]{3^{2009}}\)

Vậy \((x,y,z)=(\sqrt[2010]{3^{2009}},\sqrt[2010]{3^{2009}},\sqrt[2010]{3^{2009}})\)

18 tháng 1 2017

pt 1) x=y=z  Cosi 3 số