K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
12 tháng 7 2021

\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2\)

\(=\left(m^2-2n\right)^2-2n^2=m^4-4m^2n+4n^2-2n^2=m^4-4m^2n+2n^2\)

17 tháng 5 2017

* Với M

Ta có M= x2+y2 = x2+y2+2xy-2xy=(x+y)- 2xy= (-9)2 - 2.18 = 81- 36 = 45

* Với N 

Ta có M = x4 + y4 = (x2)2 + (y2)2 + 2(xy)2 - 2(xy)2 = (x2+y2)2 + 2 (xy)2= 452 + 2. 182= 2673

* Với T 

Ta có T = x2 - y2  => chịu

14 tháng 7 2018

x^2 +y^2 =x^2 + 2xy + y^2 - 2xy

(x+y)^2 - 2xy

(-9)^2-2*18

81 - 36

45

8 tháng 8 2017

( x+y)2= x2 +2xy+y2

=>   x2 +y2 =( x+y) -2xy

 Thay x+y =m và xy= n vào biểu thức , ta có:

            x2 +y2 =  m2 -2n

 Vậy nếu x+y =m và xy= n  thì   x2 +y2 =  m2 -2n.

26 tháng 6 2017

\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left[\left(x+y\right)^2-2xy\right]^2-2\left(xy\right)^2\)

\(=\left(a^2-2b\right)^2-2b^2=a^4-2.a^2.2b+4b^2-2b^2=a^4-4a^2b+2b^2\)

23 tháng 10 2021

\(P=\left(x+2y\right)^2-2\left(x+2y\right)\left(y-1\right)+\left(y-1\right)^2\\ P=\left(x+2y-y+1\right)^2=\left(x+y+1\right)^2\\ Q.sai.đề\\ M=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\\ M=1^3-3xy\left(x+y-1\right)=1-3xy\left(1-1\right)=1-0=1\\ x+y=2\Leftrightarrow\left(x+y\right)^2=4\\ \Leftrightarrow x^2+y^2+2xy=4\\ \Leftrightarrow2xy=4-10=-6\\ \Leftrightarrow xy=-3\\ N=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\\ N=2\left(10+3\right)=2\cdot13=26\)

28 tháng 1 2019

25 tháng 7 2019

a) \(M=\left(x+y\right)^3+2x^2+4xy+2y^2\)

\(=7^3+2\left(x^2+2xy+y^2\right)\)

\(=343+2\left(x+y\right)^2\)

\(=343+2.7^2\)

\(=343+98=441\)

25 tháng 7 2019

b) \(N=\left(x-y\right)^3-x^2+2xy-y^2\)

\(=\left(-5\right)^3-\left(x-y\right)^2\)

\(=-125-\left(-5\right)^2\)

\(=-125-25=-150\)