K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 2 2017

Bài 1)

PT tương đương \((x^2+2y^2)^2=y^2-6y+16=(y-3)^2+7\)

\(\Leftrightarrow (x^2+2y^2-y+3)(x^2+2y^2+y-3)=7\)

Ta thấy \(x^2+2y^2-y+3=x^2+y^2+(y-\frac{1}{2})^2+\frac{11}{4}>2\)

Do đó \(\left\{\begin{matrix}x^2+2y^2-y+3=7\\x^2+2y^2+y-3=1\end{matrix}\right.\Rightarrow6-2y=6\Rightarrow y=0\)

\(\Rightarrow x^2=4\Rightarrow x=\pm 2\)

Vậy \((x,y)=(2,0),(-2,0)\)

Bài 2)

PT tương đương \(5x^2+x(5y-7)+(5y^2+14y)=0\)

Để phương trình có nghiệm thì \(\Delta =(5y-7)^2-20(5y^2+14y)\geq 0\)

\(\Leftrightarrow -75y^2-350y+49\geq 0\)

Giải BPT trên thu được \(\frac{-35-14\sqrt{7}}{15}\leq y\leq \frac{-35+14\sqrt{7}}{15}\)

\(\Rightarrow -4\le y\le 0\). Do đó \(y\in \left\{-4,-3,-2,-1,0\right\}\)

Kết hợp với \(\Delta\) là số chính phương nên \(y=-1,0\) tương ứng với \(x=3,x=0\)

Vậy \((x,y)=(3,-1),(0,0)\)

AH
Akai Haruma
Giáo viên
27 tháng 2 2017

Câu 3)

Ta có \(A=\frac{x}{z}+\frac{z}{y}+3y=\frac{x}{z}+\frac{z}{y}+y(x+y+z)\)

Áp dụng bất đẳng thức AM-GM:

\(\left\{\begin{matrix} \frac{z}{y}+yz\geq 2z\\ z\leq y\Rightarrow \frac{x}{z}+xy\geq\frac{x}{y}+xy\geq 2x \end{matrix}\right.\)

\(\Rightarrow A\geq 2(x+z)+y^2=2(3-y)+y^2=(y-1)^2+5\geq 5\)

Do đó ta có đpcm

Dấu bằng xảy ra khi \(x=y=z=1\)

7 tháng 8 2020

Sử dụng bất đẳng thức AM - GM cho 2 số ta có được:

\(\sqrt{xy+2x+2y+4}=\sqrt{\left(x+2\right)\left(y+2\right)}\le\frac{x+2+y+2}{2}\)

\(\sqrt{\left(2x+2\right)y}=\sqrt{\left(x+1\right)\cdot2y}\le\frac{x+1+2y}{2}\)

Khi đó:

\(LHS\le\frac{x+2+y+2}{2}+\frac{x+1+2y}{2}=\frac{2x+3y+5}{2}=\frac{10}{2}=5\)

Đẳng thức xảy ra tại x=y=1

15 tháng 2 2019

Vì \(x;y;z\inℕ^∗\) và \(x< y< z\)nên \(\hept{\begin{cases}x\ge1\\y\ge2\\z\ge3\end{cases}}\)

\(\Rightarrow0< \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{1}+\frac{1}{2}+\frac{1}{3}< 2\)

\(\Rightarrow0< k< 2\)

Mà k nguyên dương nên k = 1

Với k = 1 thì pt : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) 

*Với x = 1 thì VT > VP với mọi y ; z nguyên dương

*Với x > 3 thì y > 4 và z > 5

\(\Rightarrow VT\le\frac{1}{3}+\frac{1}{4}+\frac{1}{5}< 1\)

=> pt vô nghiệm

Do đó x = 2 

\(\Rightarrow\frac{1}{2}+\frac{1}{y}+\frac{1}{z}=1\)

\(\Leftrightarrow\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\)

\(\Leftrightarrow\frac{y+z}{yz}=\frac{1}{2}\)

\(\Leftrightarrow2y+2z=yz\)

\(\Leftrightarrow\left(2y-yz\right)+\left(2z-4\right)=-4\)

\(\Leftrightarrow y\left(2-z\right)+2\left(z-2\right)=-4\)

\(\Leftrightarrow\left(y-2\right)\left(2-z\right)=-4\)

\(\Leftrightarrow\left(y-2\right)\left(z-2\right)=4\)

Từ pt  \(\Rightarrow y\ne2\)

            => y > 2

Vì \(\hept{\begin{cases}y>2\\z\ge3\end{cases}\Rightarrow}\hept{\begin{cases}y-2>0\\z-2>0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}y-2=1\\z-2=4\end{cases}\left(h\right)\hept{\begin{cases}y-2=2\\z-2=2\end{cases}\left(h\right)\hept{\begin{cases}y-2=4\\z-2=1\end{cases}}}}\)

\(\Leftrightarrow\hept{\begin{cases}y=3\\z=6\end{cases}}\)(Do y < z )

Vậy \(\hept{\begin{cases}x=2\\y=3\\z=6\end{cases}}\)

16 tháng 5 2019

Có \(xy+yz+zx=xyz\)\(\Leftrightarrow\)\(\frac{xy+yz+zx}{xyz}=1\)\(\Leftrightarrow\)\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

\(\frac{x^2y}{y+2x}+\frac{y^2z}{z+2y}+\frac{z^2x}{x+2z}=\frac{1}{\frac{1}{x^2}+\frac{2}{xy}}+\frac{1}{\frac{1}{y^2}+\frac{2}{yz}}+\frac{1}{\frac{1}{z^2}+\frac{2}{zx}}\ge\frac{9}{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)}\)

\(=\frac{9}{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}=\frac{9}{1^2}=9\)

Dấu "=" ko xảy ra \(\Rightarrow\)\(\frac{x^2y}{y+2x}+\frac{y^2z}{z+2y}+\frac{z^2x}{x+2z}>9\)

26 tháng 5 2018

tích đi rồi t làm 

27 tháng 5 2018

9 T I C H  sai buồn

\(A=\frac{\sqrt{x^3}}{\sqrt{xy}-2y}-\frac{2x}{x+\sqrt{x}-2\sqrt{xy}-2\sqrt{y}}.\frac{1-x}{1-\sqrt{x}}..\)

nhờ vào năng lực rinegan tối hậu của ta , ta có thể dễ dàng nhìn thấy mẫu chung 

\(x+\sqrt{x}-2\sqrt{xy}-2\sqrt{y}=\sqrt{x}\left(\sqrt{x}-2\sqrt{xy}\right)+\left(\sqrt{x}-2\sqrt{y}\right)=\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+1\right)\)

\(A=\frac{\sqrt{x^3}}{\sqrt{y}\left(\sqrt{x}-2\sqrt{y}\right)}-\frac{2x\left(x-1\right)}{\left(\sqrt{x}-2\sqrt{y}\right)\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}.\)

\(\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)

\(A=\frac{\sqrt{x^3}-2x\sqrt{y}}{\sqrt{y}\left(\sqrt{x}-2\sqrt{y}\right)}=\frac{x\sqrt{x}-2x\sqrt{y}}{\sqrt{y}\left(\sqrt{x}-2\sqrt{y}\right)}=\frac{x\left(\sqrt{x}-2\sqrt{y}\right)}{\sqrt{y}\left(\sqrt{x}-2\sqrt{y}\right)}=\frac{x}{\sqrt{y}}\)

b) thay y=625 vào ta được

\(\frac{x}{\sqrt{625}}=\frac{x}{25}< 0.2\Leftrightarrow x< 5\)

vậy   \(0< x< 5\)