K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(x+y=5\)

\(\Rightarrow x^2+2xy+y^2=25\)

\(\Rightarrow2xy=12\)

\(\Rightarrow xy=6\)

Vậy \(x^3+y^3=\left(x+y\right)\left(x^2+y^2+xy\right)\)

                     \(=5.\left(13+6\right)=95\)

a: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}=\dfrac{5}{-2}=-\dfrac{5}{2}\)

b: \(x^2+y^2=\left(x+y\right)^2-2xy=25-2\cdot\left(-2\right)=29\)

c: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{x^2+y^2}{\left(xy\right)^2}=\dfrac{29}{4}\)

d: \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=5^3-3\cdot\left(-2\right)\cdot5=125+6\cdot5=155\)

1 tháng 10 2017

Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)

\(=\left(x+y\right)^3=1^3=1\)

Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)

Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)

\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)

\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)

\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)

\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)

10 tháng 8 2016

a),x2-y2

=(x-y)(x+y)

Thay x=7; y=13 ta có:

A=(7-13)(7+13)=(-6)*20=-120

b, đề đúng là thế này 

x3-3x2+3x-1

=x3-3*x2*(-1)+3*x*(-1)2+(-1)3

=(x-1)3.Thay x=101 ta có:

B=(101-1)3=1003=1 000 000

c) x3+9x2+27x+27

=x3+3*x2*3+3*x*32+33

=(x+3)3.Thay x=97 ta có:

C=(97+3)3=1003=1 000 000

4 tháng 8 2017

1)\(x^2+6x+13=x^2+6x+9+4=\left(x+3\right)^2+4\)

Do \(\left(x+3\right)^2\ge0\)với mọi x

Nên \(\left(x+3\right)^2+4\ge4>0\)với mọi x 

Hay \(x^2+6x+13>0\)với mọi x

4 tháng 8 2017

2/ Ta có: x + 6x + 13 = x2 + 2.3x + 9 +4 = ( x + 3)2 + 4

Ta có: (x+3)>0 (với mọi x)

Nên (x+3)2 + 4 \(\ge\)4 >0.

3/ Ta có: - x2+6x-11 = - (x2-6x+11)  = - (x2-2.3x+9+2) = - (x-3)2-2

Ta có: (x-3)2>0 với mọi x

Nên - (x-3)2<0 với mọi x

Suy ra - (x-3)2-2 \(\le\)- 2 <0

4/ Ta có: x -  y = 5 

Suy ra (x - y)2 = 25

\(\Leftrightarrow\)  x2 - 2xy + y2  = 25

\(\Leftrightarrow\)x2 - 2.24  + y= 25

\(\Leftrightarrow\)  x+ y2 = 73

Ta có: x3 - y3 = (x - y).(x2  + xy + y2 ) = 5.(73 + 24) =485

7 tháng 8 2018

a) \(\dfrac{10^{12}+5^{11}.2^9-5^{13}.2^8}{4.5^5.10^6}\)

\(=\dfrac{2^{12}.5^{12}+5^{11}.2^9-5^{13}.2^8}{2^2.5^5.2^6.5^6}\)

\(=\dfrac{2^{12}.5^{12}+5^{11}.2^9-5^{13}.2^8}{2^8.5^{11}}\)

\(=\dfrac{\left(2^8.5^{11}\right)\left(2^4.5+2-5^2\right)}{2^8.5^{11}}\)

\(=2^4.5+2-5^2\)

\(=57\)

b) \(\dfrac{\left[5\left(x-y\right)^4-3\left(x-y\right)^3+4\left(x-y\right)^2\right]}{\left(y-x\right)^2}\)

\(=\dfrac{\left(x-y\right)^2\left[5\left(x-y\right)^2-3\left(x-y\right)+4\right]}{\left(y-x\right)^2}\)

\(=\dfrac{\left(x^2+y^2-2xy\right)\left[5\left(x-y\right)^2-3\left(x-y\right)+4\right]}{\left(y^2+x^2-2xy\right)}\)

\(=5\left(x-y\right)^2-3\left(x-y\right)+4\)

c) \(\dfrac{\left(x+y\right)^5-2\left(x+y\right)^4+3\left(x+y\right)^3}{-5\left(x+y\right)^3}\)

\(=\dfrac{\left(x+y\right)^3\left[5\left(x+y\right)^2-2\left(x+y\right)+3\right]}{-5\left(x+y\right)^3}\)

\(=\dfrac{5\left(x+y\right)^2-2\left(x+y\right)+3}{-5}\)

18 tháng 7 2016

a) Theo đầu bài ta có:
\(x+y=2\Rightarrow x=2-y\)
\(x^2+y^2=10\)
\(\Rightarrow\left(2-y\right)^2+y^2=10\)
\(\Rightarrow4+y^2-4y+y^2=10\)
\(\Rightarrow2y^2-4y=6\)
\(\Rightarrow2\left(y^2-2y\right)=6\)
\(\Rightarrow y\left(y-2\right)=3\)
Mà \(\hept{\begin{cases}y-\left(y-2\right)=2\\y+\left(y-2\right)=k\end{cases}\Rightarrow\hept{\begin{cases}y=\frac{k+2}{2}\\y-2=\frac{k-2}{2}\end{cases}}}\)( với k là hằng số )
\(\Rightarrow y\left(y-2\right)=\frac{k+2}{2}\cdot\frac{k-2}{2}\)
\(\Rightarrow\frac{\left(k+2\right)\left(k-2\right)}{4}=3\)
\(\Rightarrow k^2-4=12\)
\(\Rightarrow k^2=16\)
\(\Rightarrow k=4;-4\)
- Nếu k = 4 thì:
\(\Rightarrow\hept{\begin{cases}y=\frac{k+2}{2}=3\\x=2-y=-1\end{cases}\Rightarrow x^3+y^3=-1+27=26}\)
- Nếu k = -4 thì:
\(\Rightarrow\hept{\begin{cases}y=\frac{k+2}{2}=-1\\x=2-y=3\end{cases}\Rightarrow x^3+y^3=27+-1=26}\)
Vậy x3 + y3 = 26

18 tháng 7 2016

a, \(x+y=2\Rightarrow\left(x+y\right)^2=4\Rightarrow x^2+2xy+y^2=4\Rightarrow10+2xy=4\Rightarrow xy=-3\)

\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=2.13=26\)

vậy............

b, \(x+y=a\Rightarrow\left(x+y\right)^2=a^2\)

\(\Rightarrow x^2+2xy+y^2=a^2\)

\(\Rightarrow xy=\frac{a^2-b}{2}\)

\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=a\left(b-\frac{a^2-b}{2}\right)=ab-\frac{a^3-ab}{2}\)

Vậy....

26 tháng 9 2016

cậu tham khảo ở đây nè

https://vn.answers.yahoo.com/question/index?qid=20111020063905AA4SVYu

TÍCH NHA

VÀ KB LUÔN NHÉ

18 tháng 5 2017

Ta có: x + y = 5

=> (x + y )2 = 25

=> x2 + 2xy + y2 = 25

=> 13 + 2xy = 25 ( vì x2 + y2 = 13)

=> 2xy = 12

=> xy = 6

Ta lại có: x3 + y3 = (x + y)( x2 - xy + y2) = 5.(13 - 6) = 35

Vậy ......................

18 tháng 5 2017

\(( x- y)^2 = 5^2\)

\(=> x^2 - 2xy + y^2 = 25 \)

\(=> 15 - 2xy = 25 \)

\(=> 2xy = -10 \)

\(=> xy = -5 \)

\(x^3 - y^3 = ( x- y)(x^2+xy+y^2) = 5.(15 - 5 ) = 5.10 = 50\)