Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(\left\{{}\begin{matrix}3x+2y=-2\\-x+4y=3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}3\left(4y-3\right)+2y=-2\\x=4y-3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}12y-9+2y=-2\\x=4y-3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}14y=7\\x=4y-3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=\frac{1}{2}\\x=\frac{4.1}{2}-3=-1\end{matrix}\right.\)
Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(-1;\frac{1}{2}\right)\)
b, Ta có : \(\left\{{}\begin{matrix}x+2y=11\\5x-3y=3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=11-2y\\5\left(11-2y\right)-3y=3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=11-2y\\55-10y-3y=3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=11-2y\\-13y=-52\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=11-2.4=3\\y=4\end{matrix}\right.\)
Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(3;4\right)\)
c, Ta có : \(\left\{{}\begin{matrix}10x-9y=1\\15x+21y=36\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}30x-27y=3\\30x+42y=72\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}10x-9y=1\\-69y=-69\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}10x-9=1\\y=1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(1;1\right)\)
d, Ta có : \(\left\{{}\begin{matrix}2x+y=3\\x+y=2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=3-2x\\x+2-2x=2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=3-2x\\2-x=2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=3-2.0=3\\x=0\end{matrix}\right.\)
Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(0;3\right)\)
e, Ta có : \(\left\{{}\begin{matrix}x+y=2\\2x-3y=9\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=2-y\\2\left(2-y\right)-3y=9\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=2-y\\4-2y-3y=9\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=2-y\\-5y=5\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=2+1=3\\y=-1\end{matrix}\right.\)
Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(3;-1\right)\)
f, Ta có : \(\left\{{}\begin{matrix}x-2y=11\\5x+3y=3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=11+2y\\5\left(11+2y\right)+3y=3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=11+2y\\55+10y+3y=3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=11+2y\\13y=-52\end{matrix}\right.\)
Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(3;-4\right)\)
g, Ta có : \(\left\{{}\begin{matrix}3x-y=5\\2x+3y=18\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=3x-5\\2x+3\left(3x-5\right)=18\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=3x-5\\2x+9x-15=18\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=3x-5\\11x=33\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=9-5=4\\x=3\end{matrix}\right.\)
Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(3;4\right)\)
h, Ta có : \(\left\{{}\begin{matrix}5x+3y=-7\\3x-y=-8\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}5x+3\left(3x+8\right)=-7\\y=3x+8\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}5x+9x+24=-7\\y=3x+8\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}14x=-31\\y=3x+8\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=-\frac{31}{14}\\y=3.\left(-\frac{31}{14}\right)+8=\frac{19}{14}\end{matrix}\right.\)
Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(-\frac{31}{14};\frac{19}{14}\right)\)
câu d.) áp dụng phương pháp cộng đại số cũng đc nhé ..!!
\(\left\{{}\begin{matrix}x-y=4\\x+2y=13\end{matrix}\right.\)
\(\left(=\right)\)\(\left\{{}\begin{matrix}y=-9\\x+2y=13\end{matrix}\right.\)
(=)\(\left\{{}\begin{matrix}y=-9\\x-18=13\end{matrix}\right.\left(=\right)}\left\{{}\begin{matrix}y=-9\\x=31\end{matrix}\right.\)
Ơn trời đúng là đề sai rùi thảo nào C-S mãi mà nó cứ ko ra :)
Sửa đề: \(\hept{\begin{cases}x+y^2+z^3=14\\\left(\frac{1}{2x}+\frac{1}{3y}+\frac{1}{6z}\right)\left(3x+2y+z\right)=6\end{cases}}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT=\left(\frac{1}{2x}+\frac{1}{3y}+\frac{1}{6z}\right)\left(3x+2y+z\right)\ge\left(\frac{1}{\sqrt{2x}}\cdot\sqrt{3x}+\frac{1}{\sqrt{3y}}\cdot\sqrt{2y}+\frac{1}{\sqrt{6z}}\cdot\sqrt{z}\right)^2\)
\(=\left(\sqrt{\frac{3}{2}}+\sqrt{\frac{2}{3}}+\frac{1}{\sqrt{6}}\right)^2=\sqrt{6}^2=6=VP\)
Đẳng thức xảy ra khi \(x=y=z\)
Thay vào pt(1) có:
\(pt\left(1\right)\Leftrightarrow x+x^2+x^3-14=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+7\right)=0\)
\(\Leftrightarrow x=2\). Do \(x^2+3x+7=\left(x+\frac{3}{2}\right)^2+\frac{19}{4}>0\)
\(\hept{\begin{cases}x=2\\x=y=z\end{cases}}\Rightarrow x=y=z=2\)
Bài giải của b Thắng chỉ đúng với trường hợp x,y,z không âm thôi vì nếu nó âm thì √x, √y, √z không xác định. Bài toán có cho x,y,z không âm không b.
a, \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
$\begin{cases}3x+2y=97\\x+y=36\end{cases}$
`<=>` $\begin{cases}3x+2y=97\\3x+3y=108\end{cases}$
`<=>` $\begin{cases}3x+2y=97\\3y-2y=y=108-97=11\end{cases}$
`<=>` $\begin{cases}y=11\\x=\dfrac{97-2y}{3}=25\end{cases}$
Vậy HPT có nghiệm `(x,y)=(25,11)`