\(xy^2 -2y+3x^2 = 0 \)

\(x^2y+2x+y^2 =0 \)

gi...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2018

Phương pháp UCT(hệ số bất định) phần 1 - YouTube

13 tháng 8 2015

pt (1) <=>5x-2x^2-xy+y^2-y-2=0 

giai phuong trinh (1) theo an y ta co: 
y² - (x+1)y - (2x² - 5x+2)=0 
<=>Δ=(x+1)²+4(2x² - 5x+2)=x²+2x+1+8x²-20y+8=9x²-18x+9 
=9(x-1)² 
Δ>=0 => phuong trinh co nghiem 
<=>y=(x+1+3(x-1))/2 hoac y=(x+1-3(x-1))/2 
<=>y=2x-1 hoac y=2-x 
* thay y=2x-1 vao pt 2 ta duoc: 
x²+(2x-1)²+x+(2x-1)=4 
<=>5x²-x-4=0 
giai phuong trinh tren ta tim duoc x=1 va y=1 hoac x=-4/5 va y=-13/5 
*the y=2-x vao pt 2 ta duoc 
x²+(2-x)²+x+(2-x)=4 
<=>2x²-4x+2=0 
<=>x=1 =>y=1 
vay phuong trinh co 2 nghiem (1;1);(-4/5;-13/5)

13 tháng 8 2015

\(pt\left(1\right)\Leftrightarrow\left(x+y-2\right)\left(2x-y-1\right)=0\)

Chia 2 trường hợp vào dùng pp thế, thế xuống pt dưới.

17 tháng 2 2016

cái dấu \/ là giá trị tuyệt đối à

11 tháng 6 2018

@Hắc Hường

1 tháng 9 2015

Ta có  \(x=0\leftrightarrow y=0\). Xét trường hợp mà \(t=xy\ne0\). Nhân phương trình đầu với \(x\), phương trình thứ hai nhân với \(y\) ta sẽ được \(t^2-2t=-3x^3,t^2+2t=-y^3\to\left(t^2-2t\right)\left(t^2+2t\right)=3t^3\to t^2-4=3t\to t=-1,4.\)

Với \(t=-1\to-3x^3=3\to x=-1,y=1.\)

Với \(t=4\to-3x^3=8,y^3=-24\to x=-\frac{2}{\sqrt[3]{3}},y=-2\sqrt[3]{3}.\)
Vậy hệ có ba nghiệm nêu trên

15 tháng 3 2020

hãy dùng cái đầu bạn nhé :))))

\(a,\hept{\begin{cases}\left(x-y\right)^2=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)

Xét từng TH với x-y=1 và x-y=-1

\(b,\hept{\begin{cases}\left(x-1\right)\left(y+2\right)=0\\xy-3x+2y=0\end{cases}}\)

Xét từng TH x=1 và y=-2