Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{\left(\sqrt{x}+\sqrt{y}\right)^2}=\sqrt{\left(\sqrt{\frac{x}{\sqrt{x+3}}}.\sqrt{\sqrt{x+3}}+\sqrt{\frac{y}{\sqrt{y+3}}}.\sqrt{\sqrt{y+3}}\right)^2}\)
\(\le\sqrt{\left(\frac{x}{\sqrt{x+3}}+\frac{y}{\sqrt{y+3}}\right)\left(\sqrt{x+3}+\sqrt{y+3}\right)}\)
\(=\sqrt{4\left[\frac{x+3}{\sqrt{x+3}}+\frac{y+3}{\sqrt{y+3}}-3\left(\frac{1}{\sqrt{x+3}}+\frac{1}{\sqrt{y+3}}\right)\right]}\)
\(\le2\sqrt{4-\frac{12}{\sqrt{x+3}+\sqrt{y+3}}}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\) x = y = 1
Max A = 2.
Có:
\(\frac{x}{\sqrt{y}}+\sqrt{y}\ge2\sqrt{x};\frac{y}{\sqrt{x}}+\sqrt{x}\ge2\sqrt{y}\)
Cộng theo vế suy ra: \(\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}+\sqrt{x}+\sqrt{y}\ge2\sqrt{x}+2\sqrt{y}\)
\(\Rightarrow\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}-\sqrt{x}-\sqrt{y}\ge0\)
Đẳng thức xảy ra khi x = y
a) \(\frac{\sqrt{4mn^2}}{\sqrt{20m}}=\sqrt{\frac{4mn^2}{20m}}=\sqrt{\frac{n^2}{5}}=\frac{n}{\sqrt{5}}\)
b) \(\frac{\sqrt{16a^4b^6}}{\sqrt{12a^6b^6}}=\sqrt{\frac{16a^4b^6}{12a^6b^6}}=\sqrt{\frac{4}{3a^2}}=\frac{2}{\sqrt{3}.\left|a\right|}=-\frac{2}{a\sqrt{3}}\)
d) \(\frac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}=x+\sqrt{xy}+y\)
e) \(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\frac{\left|\sqrt{x}-1\right|}{\sqrt{x}+1}\)
Bài 2 :
Tìm min : Bình phương
Tìm max : Dùng B.C.S ( bunhiacopxki )
Bài 3 : Dùng B.C.S
KP9
nói thế thì đừng làm cho nhanh bạn ạ
Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích
GTNN
\(x^2+y^2=1=\left(x+y\right)^2-2xy\Rightarrow2xy=\left(x+y\right)^2-1\)
\(x;\text{ }y\ge0\Rightarrow x+y=\sqrt{x^2+y^2+2xy}\ge\sqrt{1+2xy}\ge1\)
\(A^2=2+2\left(x+y\right)+2\sqrt{\left(1+2x\right)\left(1+2y\right)}\)
\(=2+2\left(x+y\right)+2\sqrt{1+2\left(x+y\right)+4xy}\)
\(=2+2\left(x+y\right)+2\sqrt{1+2\left(x+y\right)+2\left(x+y\right)^2-2}\)
\(=2+2t+2\sqrt{2t^2+2t-1}\text{ }\left(t=x+y\ge1\right)\)
\(\ge2+2+2\sqrt{2.1^2+2.1-1}\)
\(=4+2\sqrt{3}\)
\(\Rightarrow A\ge\sqrt{4+2\sqrt{3}}=1+\sqrt{3}\)
Dấu bằng xảy ra khi \(x+y=1\Leftrightarrow xy=0\Leftrightarrow\left(x;y\right)=\left(1;0\right);\left(0;1\right)\)
GTLN
Với 2 số thực bất kì, ta luôn có: \(\left(a+b\right)^2=2\left(a^2+b^2\right)-\left(a-b\right)^2\le2\left(a^2+b^2\right)\)
\(A^2\le2\left(1+2x+1+2y\right)=4+4\left(x+y\right)\le4+4\sqrt{2\left(x^2+y^2\right)}=4+4\sqrt{2}\)
\(\Rightarrow A\le\sqrt{4+4\sqrt{2}}\)
Dấu bằng xảy ra khi 2 biến bằng nhau.
Câu 2-Ta có x^2+y^2=5
(x+y)^2-2xy=5
Đặt x+y=S. xy=P
S^2-2P=5
P=(S^2-5)/2
Ta lại có P=x^3+y^3=(x+y)^3-3xy(x+y)=S^3-3SP=S^3-3S(S^2-5)/2
Rùi tự tính
Câu1
Ta có P<=a+a/4+b+a/12+b/3+4c/3 (theo bdt cô sy)
=> P<=4/3(a+b+c)=4/3
Vậy Max p =4/3 khi a=4b=16c