Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)-(x-y)(x2+xy-1)=-(x3+x2y-x-x2y-xy2+y)
=-(x3-xy2-x+y)
=-x3+xy2+x-y
b)x2(x-1)-(x3+1)(x-y)=x3-x2-x3+x2y-x+y
=-x2+x2y-x+y
c)(3x-2)(2x-1)+(-5x-1)(3x+2)=6x2-3x-4x+2-15x2-10x-3x-2
=-9x2-20x
d) hình như bạn ghi lỗi
Bài 2: C=x(x2-y)-x2(x+y)+y(x2-x)
=x3-xy-x3-x2y+x2y-xy
=-2xy
Thay x=1/2,y=-1 vào C, ta có:
C=-2.1/2.(-1)=1
Vậy C=1 khi x=1/2 và y=-1.
\(a,VP=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\\ =\left(x+2y\right)\left[x^2-x.2y+\left(2y\right)^2\right]\\ =x^3+\left(2y\right)^3=x^3+8y^3=VT\left(đpcm\right)\\ b,VT=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\left(x-y\right)\\ =x^3-y^3-3xy\left(x-y\right)\\ =x^3-3x^2y+3xy^2-y^3\\ =\left(x-y\right)^3=VP\left(đpcm\right)\)
\(c,VT=\left(x-3y\right)\left(x^2+3xy+9y^2\right)-\left(3y+x\right)\left(9y^2-3xy+x^2\right)\\ =\left(x-3y\right)\left[x^2+x.3y+\left(3y\right)^2\right]-\left(x+3y\right).\left[x^2-x.3y+\left(3y\right)^2\right]\\ =x^3-27y^3-\left(x^3+27y^3\right)\\ =-54y^3=VP\left(đpcm\right)\)
b: (x-y)(x^2-2x+y)
\(=x^3-2x^2+xy-x^2y+2xy-y^2\)
\(=x^3-2x^2-x^2y+3xy-y^2\)
c: \(\left(x^2-y\right)\left(x+y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3+x^2y^2-xy-y^3-\left(x^3-y^3\right)\)
\(=x^2y^2-xy\)
d: \(3x\left(2xy-z\right)-5y\left(x^2-2\right)+3xz\)
\(=6x^2y-3xz-5x^2y+10y+3xz\)
\(=x^2y+10y\)
x.(x2 – y) – x2.(x + y) + y.(x2 – x)
= x.x2 – x.y – (x2.x + x2.y) + y.x2 – y.x
= x3 – xy – x3 – x2y + x2y – xy
= (x3 – x3) + (x2y – x2y) – xy – xy
= –2xy
Tại và y = –100, giá trị biểu thức bằng:
a: \(x^2-9-x^2\left(x^2-9\right)\)
\(=\left(x^2-9\right)-x^2\left(x^2-9\right)\)
\(=\left(x^2-9\right)\left(1-x^2\right)\)
\(=\left(1-x\right)\left(1+x\right)\left(x-3\right)\left(x+3\right)\)
b: \(x^2\left(x-y\right)+y^2\left(y-x\right)\)
\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-y^2\right)\)
\(=\left(x-y\right)\left(x-y\right)\left(x+y\right)=\left(x-y\right)^2\cdot\left(x+y\right)\)
c: \(x^3+27+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9+x-9\right)\)
\(=\left(x+3\right)\left(x^2-2x\right)=x\left(x-2\right)\left(x+3\right)\)
d: \(x^2+5x+6\)
\(=x^2+2x+3x+6\)
\(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)
e: \(3x^2-4x-4\)
\(=3x^2-6x+2x-4\)
\(=3x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(3x+2\right)\)
g: \(x^4+64y^4\)
\(=x^4+16x^2y^2+64y^4-16x^2y^2\)
\(=\left(x^2+8y^2\right)^2-\left(4xy\right)^2\)
\(=\left(x^2+8y^2-4xy\right)\left(x^2+8y^2+4xy\right)\)
h: \(a^2+b^2+2a-2b-2ab\)
\(=a^2-2ab+b^2+2a-2b\)
\(=\left(a-b\right)^2+2\left(a-b\right)=\left(a-b\right)\left(a-b+2\right)\)
i: \(\left(x+1\right)^2-2\left(x+1\right)\left(y-3\right)+\left(y-3\right)^2\)
\(=\left(x+1-y+3\right)^2\)
\(=\left(x-y+4\right)^2\)
k: \(x^2\left(x+1\right)-2x\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-2x+1\right)\)
\(=\left(x+1\right)\left(x-1\right)^2\)
1)
a) \(=3x^2\left(x^2-1\right)-\left(x^3-1\right)+x^8-3x^4+3x^2-1\)
\(=3x^4-3x^2-x^3+1+x^8-3x^4+3x^2-1=x^8-x^3\)
2)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)-6\left(x^2+5x\right)+45\)
\(=\left(x^2+5x\right)^2-6\left(x^2+5x\right)-36+45\)
\(=\left(x^2+5x\right)^2-6\left(x^2+5x\right)+9=\left(x^2+5x-3\right)^2\)
\(A=x^3-xy-x^3-x^2y+x^2y-xy=-2xy\\ A=-2\cdot\dfrac{1}{2}\left(-100\right)=100\)
a) \(P=x\left(x-y\right)+y\left(x-y\right)=\left(x-y\right)\left(x+y\right)=x^2-y^2=5^2-4^2=9\)
b) \(Q=x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)=x^3-xy-x^3-x^2y+x^2y-xy=0\)
x(x2 – y) – x2 (x + y) + y (x2– x) = x3 – xy – x3 – x2y + yx2 – yx= (2x-2y) – (x2 -2xy +y2) =2(x-y) – (x-y)2
Với x =1/2, y = -100 biểu thức có giá trị là -2 . 1/2. (-100) = 100.
=0 nha