Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
a)\(A=x^3+y^3+xy=1^3+\left(-1\right)^3+1.\left(-1\right)=1-1-1=-1\)
b)\(B=\sqrt{x^2+y^2}=\sqrt{6^2+8^2}=\sqrt{36+64}=\sqrt{100}=\left|10\right|=10\)
c)\(C=10x+10y+15=10\left(x+y\right)+15=10.1+15=25\)
d)\(D=x^2y+y^2x+5=xy\left(x+y\right)+5=xy.0+5=5\)
e)\(E=4x+7x^2y^2+3y^4+5y^2=?????\)
Bài 2:
bạn chỉ cần tìm nhân tử chung r gộp lại dưới dạng tích
VD: 10x+5xy=5x(2+y)
a)x2+2x+1=x2+2x.1+12=(x+1)2
b)x2-x+\(\frac{1}{4}\)=x2-2.x.\(\frac{1}{2}\)+\(\left(\frac{1}{2}\right)^2\)=\(\left(x-\frac{1}{2}\right)^2\)
Bài 1:
b) \(16x^2-8x+1=\left(4x-1\right)^2\)
c) \(\left(x+3\right)\left(x+4\right)\left(x+5\right)\left(x+6\right)+1\)
\(=\left[\left(x+3\right)\left(x+6\right)\right]\left[\left(x+4\right)\left(x+5\right)\right]+1\)
\(=\left(x^2+9x+18\right)\left(x^2+9x+20\right)+1\)
Đật \(x^2+9x+19=t\) , pt trở thành
\(\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2=\left(x^2+9x+19\right)^2\)
d) \(x^2+y^2+2x+2y+2\left(x+1\right)\left(y+1\right)+2\)
\(=\left(x^2+2x+1\right)+2\left(x+1\right)\left(y+1\right)+\left(y^2+2y+1\right)\)
\(=\left(x+1\right)^2+2\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\)
\(=\left(x+1+y+1\right)^2=\left(x+y+2\right)^2\)
e) \(x^2-2x\left(y+2\right)+y^2+4y+4\)
\(=x^2-2x\left(y+2\right)+\left(y+2\right)^2\)
\(=\left[x-\left(y+2\right)\right]^2=\left(x-y-2\right)^2\)
a)_ Sai đề
N = (x2 - 4x - 5)(x2 - 4x - 19) + 49
Đặt x2 - 4x - 5 = t, ta có:
t(t - 14) + 49
t2 - 14t + 49
= (t - 7)2
= (x2 - 4x - 12)2
= (x2 - 6x + 2x - 12)2
= [x(x - 6) + 2(x - 6)]2
= [(x + 2)(x - 6)]2
[(x + 2)(x - 6)]2 lớn hơn hoặc bằng 0
Vậy Min N = 0 khi x = - 2 hoặc x = 6.
T = x2 - 6x + y2 - 2y + 12
= x2 - 2 . x . 3 + 9 + y2 - 2 . y . 1 + 1 + 2
= (x - 3)2 + (y - 1)2 + 2
(x - 3)2 lớn hơn hoặc bằng 0
(y - 1) lớn hơn hoặc bằng 0
(x - 3)2 + (y - 1)2 + 2 lớn hơn hoặc bằng 2
Vậy Min T = 2 khi x = 3 và y = 1.
Chúc bạn học tốt ^^