Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{x}{x-3}-\frac{x}{x-5}-\frac{x}{x-4}+\frac{x}{x-6}=0\)
\(\Leftrightarrow x\left(\frac{1}{x-3}-\frac{1}{x-5}-\frac{1}{x-4}+\frac{1}{x-6}\right)=0\)
\(\Leftrightarrow x\left(\frac{x-6+x-3}{\left(x-3\right)\left(x-6\right)}-\frac{x-4+x-5}{\left(x-4\right)\left(x-5\right)}\right)=0\)
\(\Leftrightarrow x\left(2x-9\right)\left(\frac{1}{x^2-9x+18}-\frac{1}{x^2-9x+20}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{9}{2}\end{matrix}\right.\)
B/\(\Leftrightarrow\frac{2\left(3x^2-11x+9\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}-\frac{6}{x-6}=0\)
\(\Leftrightarrow-\frac{2\left(11x^2-42x+36\right)}{\left(x-6\right)\left(x-1\right)\left(x-2\right)\left(x-3\right)}=0\)\(\Rightarrow11x^2-42x+36=0\)\(\Leftrightarrow11x^2-42x+\frac{441}{11}-\frac{45}{11}=\left(\sqrt{11}x+\frac{21}{\sqrt{11}}\right)^2-\frac{45}{11}.\)Dùng căn giải típ nha
1, x+3(x-1)=4 => 4x-3=4 => 4x=7 => x=\(\dfrac{7}{4}\)
2, 2.(x-3)+5=3 => 2x-6+5=3 =>2x=4 => x=2
3, x.(x-2)-\(x^2\)=-2 => \(x^2-2x-x^2\)=-2 => -2x=-2 => x=1
4, \(x^2-x.\left(x+2\right)=6\)=> \(x^2-x^2-2x=6\)=> -2x=6 => x=-3
5,3x.(x-5)-3x.(x-3)=6 => \(3x^2-15x-3x^2+9x=6\) => -6x=6 => x=-1
6, 3.(\(x^2-2x+1\))+x.(2-3x)=7 => \(3x^2-6x+3+2x-3x^2=7\)=> -4x=4=> x=-1
huyển vế:
(x-2)(x-6)(x-3)(x-4)- 72X^2
(x-2)(x-6)
= (x^2 - ... +12)
số giữa:
-6x -2x = -8x
(x-3)(x-4)
= (x^2 ... +12)
số giữa:
-4x -3x = -7x
nhân 2 số giữa với nhau:
(-8x)(-7x) = +56x^2
-72x^2 +56x^2 = -16x^2 = (-16x)(x)
Đáp số:
(x^2 -16x +12)(x^2 +x +12)
1. rút gọn
a)x^8+x^6 +x^6+x^5+x^4+x^3+x^2+x+1/x^3 -1
b)x^5+x+1/x^3+x^2+x
y^3-x^3/x^3-3x^2y+3xy^2-y^3
a) \(\dfrac{x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1}{x^3-1}\)
\(=\dfrac{\left(x^8+x^7+x^6\right)+\left(x^5+x^4+x^3\right)+\left(x^2+x+1\right)}{x^3-1}\)
\(=\dfrac{x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)+\left(x^2+x+1\right)}{x^3-1}\)
\(=\dfrac{\left(x^2+x+1\right)\left(x^6+x^3+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^6+x^3+1}{x-1}\)
b) \(\dfrac{x^5+x+1}{x^3+x^2+x}\)
\(=\dfrac{x^5+x^4+x^3+x^2-x^4-x^3-x^2+x+1}{x^3+x^2+x}\)
\(=\dfrac{\left(x^5+x^4+x^3\right)-\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)}{x^3+x^2+x}\)
\(=\dfrac{x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)}{x^3+x^2+x}\)
\(=\dfrac{\left(x^2+x+1\right)\left(x^3-x^2+1\right)}{x\left(x^2+x+1\right)}\)
\(=\dfrac{x^3-x^2+1}{x}\)
\(a,\)( sửa lại xíu đề cho đúng nhé )
\(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=-\frac{2x}{x^2+x+1}\)
\(\Rightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}=-\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Rightarrow x^2+x+1-3x^2=-2x^2+2x\)
\(\Rightarrow x=1\)
\(g,\)\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)=-16\)
\(\Rightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)=-16\)
Đặt \(x^2+10x+16=a\)
\(\Rightarrow a\left(a+8\right)=-16\)
\(\Rightarrow a^2+8a+16=0\)
\(\Rightarrow\left(a+4\right)^2=0\)
\(\Leftrightarrow\left(x^2+10x+20\right)^2=0\)
\(\Rightarrow x^2+10x+25-25=0\)
\(\Rightarrow\left(x+5\right)^2-\left(\sqrt{5}\right)^2=0\)
\(\Rightarrow\left(x+5-\sqrt{5}\right)\left(x+5+\sqrt{5}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-5+\sqrt{5}\\x=-5-\sqrt{5}\end{cases}}\)
\(x\left(x+1\right)\left(x+6\right)+x^3\)
\(=\left(x^2+x\right)\left(x+6\right)+x^3\)
\(=x^3+6x^2+x^2+6x+x^3\)
\(=2x^2+7x^2+6x\)