Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+1\right)\left(x^4+1\right)\left(x^{16}+x^8+1\right)=\frac{x^{24}-x+1}{\left(x^2-x+1\right)\left(x^2+x+1\right)}=x^6-1\)
đề như này à bạn ???
sao có 2 dấu = vậy
\(\frac{x^{24}+x^{20}+...+x^4+1}{x^{26}+x^{24}+...+x^2+1}=\frac{x^{24}+x^{20}+...+x^4+1}{\left(x^{24}+x^{20}+...+x^4+1\right)+\left(x^{26}+x^{22}+...+x^2\right)}\)
\(=1-\frac{x^2\left(x^{24}+x^{20}+...+x^4+x^1\right)}{\left(1+x^2\right)\left(x^{24}+2^{20}+...+x^4+1\right)}=1-\frac{x^2}{1+x^2}\)
\(=\frac{1+x^2-x^2}{1+x^2}=\frac{1}{1+x^2}\)
Hoặc cách khác:
\(\frac{x^{24}+x^{20}+...+x^4+1}{x^{26}+x^{24}+...+x^2+1}=\frac{x^{24}+x^{20}+...+x^4+1}{\left(x^{24}+x^{20}+...+x^4+1\right)+x^2\left(x^4+x^{20}+...+x^4+1\right)}\)
\(=\frac{x^{24}+x^{20}+...+x^4+1}{\left(x^2+1\right)\left(x^{24}+x^{20}+...+x^4+1\right)}=\frac{1}{x^2+1}\)
Đề đọc khó hiểu quá. Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
a) x4 - 5x2 + 4 = 0 (*)
đặt x2 = m (\(m\ge0\))
(*) <=> m2 - 5m + 4 = 0
m2 - 4m - m + 4 = 0
m(m - 4) - (m - 4) = 0
(m - 4)(m - 1) = 0
vậy m - 4 = 0 hoặc m - 1 = 0
hay m = 4 hoặc m = 1
m = 4 => x2 = 4 => \(x=\pm2\)
m = 1 => x2 = 1 => \(x=\pm1\)
d) \(x\left(x+1\right)\left(x-1\right)\left(x-2\right)=24\)
\(\Leftrightarrow\left[x\left(x-1\right)\right]\left[\left(x+1\right)\left(x-2\right)\right]=24\)
\(\Leftrightarrow\left(x^2-x\right)\left(x^2-x-2\right)-24=0\)
\(\Leftrightarrow\left(x^2-x\right)^2-2\left(x^2-x\right)+1-25=0\)
\(\Leftrightarrow\left(x^2-x+1\right)^2-25=0\)
\(\Leftrightarrow\left(x^2-x+6\right)\left(x^2-x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-x+6=0\left(1\right)\\x^2-x-4=0\left(2\right)\end{cases}}\)
+) Pt (1) \(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=-\frac{23}{4}\) ( vô nghiệm )
+) Pt (2) \(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=\frac{17}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{17}}{4}+\frac{1}{2}\\x=-\frac{\sqrt{17}}{4}+\frac{1}{2}\end{cases}}\) ( thỏa mãn )
Vậy pt đã cho có nghiệm \(S=\left\{\pm\frac{\sqrt{17}}{4}+\frac{1}{2}\right\}\)
b, Ta có : \(\left(x^2-x\right)^2-2=x^2-x\)
\(\Leftrightarrow t^2-2=t\)
\(\Leftrightarrow\orbr{\begin{cases}t=2\\t=-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-x=2\\x^2-x=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\x=-1\\x\notinℝ\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Vậy \(x_1=-1;x_2=2\)
c, Ta có : \(x.\left(x+1\right).\left(x-1\right).\left(x+2\right)=24\)
\(\Leftrightarrow x.\left(x^2-1\right).\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^3-x\right).\left(x+2\right)=24\)
\(\Leftrightarrow x^4+2.x^3-x^2-2.x=24\)
\(\Leftrightarrow x^4+2.x^3-x^2-2.x-24=0\)
\(\Leftrightarrow x^4-2.x^3+4.x^3-8.x^2+7.x^2-14.x+12.x-24=0\)
\(\Leftrightarrow x^3.\left(x-2\right)+4.x^2.\left(x-2\right)+7.x.\left(x-2\right)+12.\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x^3+4.x^2+x^2+7.x+12\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x^3+3.x^2+x^2+3.x+4.x+12\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left[x^2.\left(x+3\right)+x.\left(x+3\right)+4.\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+3\right).\left(x^2+x+4\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\x+3=0\\x^2+x+4=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\x=-3\\x\notinℝ\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)
Vậy \(x_1=-3;x_2=2\)
Ta có:
\(\dfrac{x^{24}+x^{20}+x^{16}+x^{12}+...+x^4+1}{x^{26}+x^{24}+x^{22}+x^{20}+...+x^2+1}\)
Xét \(M=x^{24}+x^{20}+x^{16}+x^{12}+...+x^4+1\)
\(\Rightarrow x^4M=x^{28}+x^{24}+x^{20}+x^{16}+...+x^8+x^4\)
\(\Rightarrow x^4M-M=\left(x^{28}+x^{24}+x^{20}+...+x^8+x^4\right)-\left(x^{24}+x^{20}+x^{16}+...+x^4+1\right)\)
\(\Rightarrow\left(x^4-1\right)M=x^{28}-1\)
\(\Rightarrow M=\dfrac{x^{28}-1}{x^4-1}\)
Xét \(N=x^{26}+x^{24}+x^{22}+x^{20}+...+x^2+1\)
\(\Rightarrow x^2N=x^{28}+x^{26}+x^{24}+x^{20}+...+x^4+x^2\)
\(\Rightarrow x^2N-N=\left(x^{28}+x^{26}+x^{24}+...+x^4+x^2\right)-\left(x^{26}+x^{24}+x^{22}+...+x^2+1_{ }\right)\)
\(\Rightarrow\left(x^2-1\right)N=x^{28}-1\)
\(\Rightarrow N=\dfrac{x^{28}-1}{x^2-1}\)
Ta có:
\(\dfrac{x^{24}+x^{20}+x^{16}+x^{12}+...+x^4+1}{x^{26}+x^{24}+x^{22}+x^{20}+...+x^2+1}\)
\(=\dfrac{M}{N}=\dfrac{\dfrac{x^{28}-1}{x^4-1}}{\dfrac{x^{28}-1}{x^2-1}}\)
\(=\dfrac{x^{28}-1}{x^4-1}.\dfrac{x^2-1}{x^{28}-1}=\dfrac{x^2-1}{x^4-1}\)
\(=\dfrac{x^2-1}{\left(x^2-1\right)\left(x^2+1\right)}=\dfrac{1}{x^2+1}\)
Chúc bạn học tốt!
Ta có : x(x - 1)(x + 1)(x + 2) = 24
<=> [(x - 1)(x + 2)][x(x + 1)] - 24 = 0
<=> (x2 + x - 2)(x2 + x) - 24 = 0
<=> (x2 + x - 1 - 1)(x2 + x - 1 + 1) - 24 = 0
<=> (x2 + x - 1)2 - 1 - 24 = 0
<=> (x2 + x - 1)2 - 25 = 0
<=> (x2 + x - 6)(x2 + x + 4) = 0
<=> (x2 - 2x + 3x - 6)(x2 + x + 4) = 0
<=> [x(x - 2) + 3(x - 2)](x2 + x + 4) = 0
<=> (x + 3)(x - 2)(x2 + x + 4) = 0
<=> x + 3 = 0 hoặc x - 2 = 0 hoặc x2 + x + 4 = 0
<=> x = -3 hoặc x = 2 hoặc x \(\in\varnothing\)
Vậy \(x\in\left\{-3;2\right\}\)là nghiệm phương trình
\(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)
\(\Leftrightarrow x\left(x+1\right)\left(x-1\right)\left(x+2\right)-24=0\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)
Đặt \(x^2+x=t\)
\(\Leftrightarrow t\left(t-2\right)-24=0\Leftrightarrow t^2-2t-24=0\)
\(\Leftrightarrow\left(t-6\right)\left(t+4\right)=0\Leftrightarrow t=6;t=-4\)
\(\Leftrightarrow x^2+x-6=0\Leftrightarrow\left(x-2\right)\left(x+3\right)\Leftrightarrow x=2;x=-3\)
\(\Leftrightarrow x^2+x+4=0\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{15}{4}>0\)
Vậy tập nghiệm của phương trình là S = { 2 ; -3 }