K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2021

\(x\left(x+1\right)\left(x+6\right)-x^3=5x\\ \Rightarrow x\left(x^2+7x+6\right)-x^3=5x\\ \Rightarrow x^3+7x^2+6-x^3-5x=0\\ \Rightarrow7x^2-5x+6=0\\ \)

đến đây nghiệm xấu lắm bạn xem lại đề đúng không

9 tháng 10 2021

\(a,\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{2}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\\ c,\Leftrightarrow2x^2-10x-3x-2x^2=26\\ \Leftrightarrow-13x=26\Leftrightarrow x=-2\\ d,\Leftrightarrow x^2-18x+16=0\\ \Leftrightarrow\left(x^2-18x+81\right)-65=0\\ \Leftrightarrow\left(x-9\right)^2-65=0\\ \Leftrightarrow\left(x-9+\sqrt{65}\right)\left(x-9-\sqrt{65}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=9-\sqrt{65}\\9+\sqrt{65}\end{matrix}\right.\)

\(e,\Leftrightarrow x^2-10x-25=0\\ \Leftrightarrow\left(x-5\right)^2-50=0\\ \Leftrightarrow\left(x-5-5\sqrt{2}\right)\left(x-5+5\sqrt{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5+5\sqrt{2}\\x=5-5\sqrt{2}\end{matrix}\right.\\ f,\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\\ g,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ h,\Leftrightarrow x^2+2x+3x+6=0\\ \Leftrightarrow\left(x+3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\\ i,\Leftrightarrow4x^2-12x+9-4x^2+4=49\\ \Leftrightarrow-12x=36\Leftrightarrow x=-3\)

\(j,\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\\ k,\Leftrightarrow x^2\left(x-1\right)=4\left(x-1\right)^2\\ \Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

a) Ta có: \(x^3+x^2+x+1=0\)

\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)

mà \(x^2+1>0\forall x\)

nên x+1=0

hay x=-1

Vậy: S={-1}

b) Ta có: \(x^3-6x^2+11x-6=0\) 

\(\Leftrightarrow x^3-x^2-5x^2+5x+6x-6=0\)

\(\Leftrightarrow x^2\left(x-1\right)-5x\left(x-1\right)+6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-5x+6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=3\end{matrix}\right.\)

Vậy: S={1;2;3}

c) Ta có: \(x^3-x^2-21x+45=0\)

\(\Leftrightarrow x^3-3x^2+2x^2-6x-15x+45=0\)

\(\Leftrightarrow x^2\left(x-3\right)+2x\left(x-3\right)-15\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+2x-15\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+5x-3x-15\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2\cdot\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

Vậy: S={3;-5}

d) Ta có: \(x^4+2x^3-4x^2-5x-6=0\)

\(\Leftrightarrow x^4-2x^3+4x^3-8x^2+4x^2-8x+3x-6=0\)

\(\Leftrightarrow x^3\left(x-2\right)+4x^2\cdot\left(x-2\right)+4x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+4x^2+4x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+3x^2+x^2+4x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+3\right)+\left(x+1\right)\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)=0\)

mà \(x^2+x+1>0\forall x\)

nên (x-2)(x+3)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

Vậy: S={2;-3}

9 tháng 10 2021

a)=\(3x^3-15x^2+21x\)

b)\(=-2x^4y-10x^2y+2xy\)

c)\(=-x^3+6x^2+5x-4x^2+24x+20=-x^3+2x^2+29x+20\)

d)\(=2x^4-3x^3+4x^2-2x^2+3x-4=2x^4-3x^32x^2+3x-4\)

e)\(=x^2-4y^2\)

f)\(=-2x^2y^3+y-3\)

g)\(=3xy^4-\dfrac{1}{2}y^2+2x^2y\)

h)\(=9x^2-6x+1-7x^2-14=2x^2-6x-13\)

i)\(=x^2-x-3\)

j)\(=\left(x+2y\right)\left(x^2-2y+4y^2\right):\left(x+2y\right)=x^2-2y+4y^2\)

24 tháng 10 2021

Tại sao ý b có dấu - trước ngoặc đâu mà đổi dấu mong bn giải đáp

13 tháng 8 2023

a) \(\left(x^2+5x-6\right):\left(x-1\right)\)

\(=\left[x\left(x+6\right)-\left(x+6\right)\right]:\left(x-1\right)\)

\(=\left(x-1\right)\left(x+6\right):\left(x-1\right)\)

\(=x+6\)

b) \(\left(x^3-x^2-5x+21\right):\left(x^2-4x+7\right)\)

\(=\left(x+3\right)\left(x^2-4x+7\right):\left(x^2-4x+7\right)\)

\(=x+3\)

28 tháng 5 2019

a/ pt đãcho tương đương với

6x\(^2\)+ 21x -2x-7-6x+5x-6x+5= 16

<=>18x=18

=> x=1

b/ pt đã cho tương đương với

10x\(^2\)+9x-10x\(^2\)-15x+2x+3= 8

<=> -4x=5

<=.> x=-\(\frac{5}{4}\)

c/ pt đã cho tương đương với

21x-15x\(^2\)-35+25x+15x\(^2\)-10x+6x-4-2=0

<=>42x=41

<=> x= \(\frac{41}{42}\)

d/ pt đã cho tương đương với

( x\(^2\)+x )(x+6)-x\(^3\)=5x

<=> x\(^3\)+6x\(^2\)+x\(^2\)+6x-x\(^3\)=5x

<=> 8x\(^2\)+6x-5x=0

<=>8x\(^2\)+16x-10x-5x=0

<=> (x+2)2x-5(x+2)=0

<=> (x+2)(2x-5)=0

<=>x+2=0 hoặc 2x+5=0

=> x=-2 hoặc x= -\(\frac{5}{2}\)

1) \(\left(\dfrac{1}{2}x+3\right)\left(x^2-4x-6\right)\)

\(=\dfrac{1}{2}x^3-2x^2-3x+3x^2-12x-18\)

\(=\dfrac{1}{2}x^3+x^2-15x-18\)

2) \(\left(6x^2-9x+15\right)\left(\dfrac{2}{3}x+1\right)\)

\(=4x^3+6x^2-6x^2-9x+10x+15\)

\(=4x^3+x+15\)

3) Ta có: \(\left(3x^2-x+5\right)\left(x^3+5x-1\right)\)

\(=3x^5+15x^2-3x^2-x^4-5x^2+x+5x^3+25x-5\)

\(=3x^5-x^4+5x^3+10x^2+26x-5\)

4) Ta có: \(\left(x-1\right)\left(x+1\right)\left(x-2\right)\)

\(=\left(x^2-1\right)\left(x-2\right)\)

\(=x^3-2x^2-x+2\)

22 tháng 5 2021

\(\left(1-x\right)\left(5x+3\right)=\left(3x-7\right)\left(x-1\right)\)

\(< =>\left(1-x\right)\left(5x+3+3x-7\right)=0\)

\(< =>\left(1-x\right)\left(8x-4\right)=0\)

\(< =>\orbr{\begin{cases}1-x=0\\8x-4=0\end{cases}< =>\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}}\)

22 tháng 5 2021

\(\left(x-2\right)\left(x+1\right)=x^2-4\)

\(< =>\left(x-2\right)\left(x+1\right)=\left(x-2\right)\left(x+2\right)\)

\(< =>\left(x-2\right)\left(x+1-x-2\right)=0\)

\(< =>-1\left(x-2\right)=0\)

\(< =>2-x=0< =>x=2\)

20 tháng 12 2019

a) x = 2 7                         b) x = 2.

c) x = 2                          d) x = 1.