Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a (x+1)(x+2)(x+3)(x+4)+1
= ((x+1)(x+4)). ((x+2)(x+3))+1
= (x^2+5x+4)(x^2+5x+6)+1
Đặt x^2+5x+4= t thì ta có:
t(t+2)+1= t^2+2t+1=(t+1)^2
Thay vào ta có:
(t+1)^2= (x^2+5x+4+1)^2 =(x^2+5x+5)^2
tương tự lm phần b, c, d
phân tích đa thức thành nhân tử rùi làm!!!
54645475676575687687697645452524367567565876
a, ( x2 + x )2 - 14 ( x2 + x ) + 24
= (x2 + x)2 - 2(x2 + x) -12(x2 + x) + 24
= (x2 + x).(x2 + x -2) - 12(x2 + x -2)
= (x2 + x -2).(x2 + x -12)
= (x2 + 2x - x - 2).(x2 + 4x - 3x - 12)
=[x.(x+2)-(x+2)].[x.(x+4)-3(x+4)]
= (x+2).(x-1).(x+4).(x-3)
= x4 + 2x3 - 13x2 - 14x + 24
b, ( x2 + x )2 + 4x2 + 4x - 12
= x4 + 2x3 + x2 + 4x2 + 4x -12
= x4 + 2x3 + 5x2 + 4x -12
c, x4 + 2x3 + 5x2 + 4x - 12
= x4 - x3 + 3x3 - 3x2 + 8x2 - 8x +12x -12
= x3(x-1) + 3x2(x-1) + 8x(x-1) + 12(x-1)
= (x-1) . (x3 + 3x2 + 8x +12)
= (x-1) . ( x3 +2x2 + x2 + 2x + 6x +12)
= (x-1). [x2(x+2) + x(x+2) + 6(x+2)]
= (x-1).(x+2).(x2 + x+ 6)
1) \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12=x^4+x^3+2x^2+x^3+x^2+2x+x^2+x+2-12\)
\(=x^4+2x^3+4x^2+3x-10=\left(x^4+2x^3\right)+\left(4x^2+8x\right)+\left(-5x-10\right)\)
\(=x^3.\left(x+2\right)+4x.\left(x+2\right)-5.\left(x+2\right)=\left(x+2\right)\left(x^3+4x-5\right)\)
\(=\left(x+2\right)\left(x^3-x^2+x^2-x+5x-5\right)=\left(x+2\right)\left(x-1\right)\left(x^2+x+5\right)\)
2) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left[\left(x+2\right)\left(x+5\right)\right].\left[\left(x+3\right)\left(x+4\right)\right]-24\)
\(=\left(x^2+7x+10\right).\left(x^2+7x+12\right)-24\)
Đặt \(a=x^2+7x+10\) thì ta có :\(a.\left(a+2\right)-24=a^2+2a-24=\left(a^2+2a+1\right)-25=\left(a+1\right)^2-5^2\)
\(=\left(a+1+5\right)\left(a+1-5\right)=\left(a+6\right)\left(a-4\right)\)
Thay a , ta có :
\(\left(x^2+7x+10+6\right)\left(x^2+7x+10-4\right)=\left(x^2+7x+16\right).\left(x^2+x+6x+6\right)\)
\(=\left(x^2+7x+16\right)\left(x+1\right)\left(x+6\right)\)
Bài 1 :
a, \(A=x\left(x-6\right)+10\)
=x^2 - 6x + 10
=x^2 - 2.3x+9+1
=(x-3)^2 +1 >0 Với mọi x dương
\(x.\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)
\(\Leftrightarrow x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)
\(\Leftrightarrow\left(x^2+x-1+1\right)\left(x^2+x-1-1\right)=24\)
\(\Leftrightarrow\left(x^2+x-1\right)^2-1-24=0\)
\(\Leftrightarrow\left(x^2+x-1\right)^2=25\)
\(\Leftrightarrow x^2+x-1=\pm5\)
\(TH1:x^2+x-1=5\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
\(TH2:x^2+x-1=-5\)
\(\Leftrightarrow x^2+x+4=0\)
Vì \(x^2+x+4=x^2+2\cdot\frac{1}{2}\cdot x+\frac{1}{4}+\frac{15}{4}=\left(x+\frac{1}{2}\right)^2+\frac{15}{4}>0\)
Mà \(x^2+x+4=0\)
=> pt vô nghiệm
Vậy \(\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
x( x - 1 )( x + 1 )( x + 2 ) = 24
<=> [ x( x + 1 ) ][ ( x - 1 )( x + 2 ) ] = 24
<=> ( x2 + x )( x2 + x - 2 ) - 24 = 0
Đặt t = x2 + x
pt <=> t( t - 2 ) - 24 = 0
<=> t2 - 2t - 24 = 0
<=> t2 - 6t + 4t - 24 = 0
<=> t( t - 6 ) + 4( t - 6 ) = 0
<=> ( t - 6 )( t + 4 ) = 0
<=> ( x2 + x - 6 )( x2 + x + 4 ) = 0
<=> ( x2 - 2x + 3x - 6 )( x2 + x + 4 ) = 0
<=> [ x( x - 2 ) + 3( x - 2 ) ]( x2 + x + 4 ) = 0
<=> ( x - 2 )( x + 3 )( x2 + x + 4 ) = 0
Vì x2 + x + 4 = ( x + 1/2 )2 + 15/4 ≥ 15/4 > 0 ∀ x
=> x - 2 = 0 hoặc x + 3 = 0
<=> x = 2 hoặc x = -3
Vậy ...