
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1, \(3\sqrt{x^2-x}-3\sqrt{6}=0\)
<=>\(\sqrt{x^2-x}=\sqrt{6}\)
<=> x^2 -x -6 =0
<=> \(\orbr{\begin{cases}x1=3\\x2=-2\end{cases}}\)
vậy .....
2, vô nghiệm

1. \(N=\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\right):\frac{\sqrt{x}-3}{2\sqrt{x}-x}\)
\(N=\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}+\frac{4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\frac{\sqrt{x}-3}{\sqrt{x}\left(2-\sqrt{x}\right)}\)
\(N=\left(\frac{\left(2+\sqrt{x}\right)^2-\left(2-\sqrt{x}\right)^2+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\frac{\sqrt{x}-3}{\sqrt{x}\left(2-\sqrt{x}\right)}\)
\(N=\left(\frac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\frac{\sqrt{x}-3}{\sqrt{x}\left(2-\sqrt{x}\right)}\)
\(N=\left(\frac{8\sqrt{x}+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right).\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)
\(N=\frac{4\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)
\(N=\frac{4x}{x-3}\)
Vậy \(N=\frac{4x}{x-3}\)với \(x>0,x\ne4,x\ne9\)
2.Với \(x>0,x\ne4,x\ne9\)
Ta có \(N< 0\)\(\Leftrightarrow\frac{4x}{x-3}< 0\)\(\Leftrightarrow x-3< 0\)(Vì \(x>0\Leftrightarrow4x>0\)\(với\forall x\))\(\Leftrightarrow x< 3\)
Vậy ..........
3. Với \(x>0,x\ne4,x\ne9\)
Ta có \(\left|N\right|=1\Leftrightarrow\left|\frac{4x}{x-3}\right|=1\Leftrightarrow\orbr{\begin{cases}\frac{4x}{x-3}=1\\\frac{4x}{x-3}=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}4x=3-x\\4x=x-3\end{cases}}\)\(\orbr{\begin{cases}x=\frac{3}{5} \left(N\right)\\x=-1\left(N\right)\end{cases}}\)
Vậy ...............

Ta có : \(\sqrt{3}.x-\sqrt{75}=0\)
\(\Leftrightarrow\sqrt{3}.x-5\sqrt{3}=0\)
\(\Leftrightarrow\sqrt{3}\left(x-5\right)=0\)
Vì \(\sqrt{3}\ne0\)
Nên : x - 5 = 0
Vậy x = 5.
b) Ta có : \(\sqrt{2}.x+\sqrt{2}=\sqrt{8}+\sqrt{32}\)
\(\Leftrightarrow\sqrt{2}\left(x+1\right)=6\sqrt{2}\)
\(\Leftrightarrow\sqrt{2}\left(x+1\right)-6\sqrt{2}=0\)
\(\Leftrightarrow\sqrt{2}.\left(x+1-6\right)=0\)
\(\Leftrightarrow\sqrt{2}.\left(x-5\right)=0\)
Vì \(\sqrt{2}\ne0\)
Nên x - 5 = 0
Suy ra : x = 5

a, P nguyên khi 3 chia hết cho \(\sqrt{x}+1\)
\(\sqrt{x}+1\inƯ\left(3\right)\in1;-1;3;-3\)
P/s: Ko chắc

a, đổi dấu ở phân số cuối để mẫu thành x-4
rồi sau quy đồng mẫu chung là x-4
bn sẽ rút gọn được
b, theo câu a ta có P = \(\frac{3x-3\sqrt{x}-3}{\left(\sqrt{x-2}\right)\left(\sqrt{x+2}\right)}\)
2 trường hợp
th1 tử và mẫu cùng dương
th2
tử và mẫu cùng âm
c, thay x= 4 vào biểu thức đã rút gọn ở câu a
\(x=\frac{\left(1+\sqrt{5}\right)^2}{4}\)