Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ ĐKXĐ: \(x\ge-1\)
\(2\sqrt{\left(\sqrt{x+1}+1\right)^2}-\sqrt{x+1}=4\)
\(\Leftrightarrow2\left(\sqrt{x+1}+1\right)-\sqrt{x+1}=4\)
\(\Leftrightarrow\sqrt{x+1}=2\)
\(\Rightarrow x=3\)
b/ ĐKXĐ: \(x\ge1\)
\(\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(2-\sqrt{x-1}\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x-1}-1\right|+\left|2-\sqrt{x-1}\right|=1\)
Ta có \(VT\ge\left|\sqrt{x-1}-1+2-\sqrt{x-1}\right|=1\)
Nên dấu "=" xảy ra khi và chỉ khi:
\(1\le\sqrt{x-1}\le2\Rightarrow2\le x\le5\)
Vậy nghiệm của pt là \(2\le x\le5\)
c/ ĐKXĐ: \(x\ge1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)
\(\Leftrightarrow\left|\sqrt{x-1}+1\right|-\left|\sqrt{x-1}-1\right|=2\)
- Với \(\sqrt{x-1}\ge1\Rightarrow x\ge2\) ta có:
\(\sqrt{x-1}+1-\sqrt{x-1}+1=2\)
\(\Leftrightarrow2=2\) (luôn đúng)
- Với \(1\le x< 2\) ta có:
\(\sqrt{x-1}+1-1+\sqrt{x-1}=2\)
\(\Leftrightarrow\sqrt{x-1}=1\Rightarrow x=2\left(l\right)\)
Vậy nghiệm của pt là \(x\ge2\)
d/ ĐKXĐ: \(-\le x\le1\)
\(\Leftrightarrow\sqrt{5-4x^2+4\sqrt{1-x^2}}+\sqrt{5-4x^2-4\sqrt{1-x^2}}=2x+2\)
\(\Leftrightarrow\sqrt{4-4x^2+2\sqrt{4-4x^2}+1}+\sqrt{4-4x^2-2\sqrt{4-4x^2}+1}=2x+2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{4-4x^2}+1\right)^2}+\sqrt{\left(\sqrt{4-4x^2}-1\right)^2}=2x+2\)
\(\Leftrightarrow\left|\sqrt{4-4x^2}+1\right|+\left|\sqrt{4-4x^2}-1\right|=2x+2\)
TH1: \(\sqrt{4-4x^2}\ge1\Rightarrow-\frac{\sqrt{3}}{2}\le x\le\frac{\sqrt{3}}{2}\) ta có:
\(\sqrt{4-4x^2}+1+\sqrt{4-4x^2}-1=2x+2\)
\(\Leftrightarrow\sqrt{4-4x^2}=x+1\)
\(\Leftrightarrow4-4x^2=x^2+2x+1\)
\(\Leftrightarrow5x^2+2x-3=0\Rightarrow\left[{}\begin{matrix}x=-1\left(l\right)\\x=\frac{3}{5}\end{matrix}\right.\)
TH2: \(\left[{}\begin{matrix}-1\le x< -\frac{\sqrt{3}}{2}\\\frac{\sqrt{3}}{2}< x\le1\end{matrix}\right.\) ta có:
\(\sqrt{4-4x^2}+1+1-\sqrt{4-4x^2}=2x+2\)
\(\Leftrightarrow2x=0\Rightarrow x=0\left(l\right)\)
Vậy pt có nghiệm duy nhất \(x=\frac{3}{5}\)
a, ĐK: \(x\ge1\)
\(\sqrt{x-\sqrt{x^2-1}}+\sqrt{x+\sqrt{x^2-1}}=2\)
\(\Leftrightarrow\sqrt{2x-2\sqrt{x^2-1}}+\sqrt{2x+2\sqrt{x^2-1}}=2\sqrt{2}\)
\(\Leftrightarrow\sqrt{x-1+x+1-2\sqrt{\left(x-1\right)\left(x+1\right)}}+\sqrt{x-1+x+1+2\sqrt{\left(x-1\right)\left(x+1\right)}}=2\sqrt{2}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-\sqrt{x+1}\right)^2}+\sqrt{\left(\sqrt{x-1}+\sqrt{x+1}\right)^2}=2\sqrt{2}\)
\(\Leftrightarrow\sqrt{x+1}-\sqrt{x-1}+\sqrt{x-1}+\sqrt{x+1}=2\sqrt{2}\)
\(\Leftrightarrow2\sqrt{x+1}=2\sqrt{2}\)
\(\Leftrightarrow x+1=2\)
\(\Leftrightarrow x=1\left(tm\right)\)
b, ĐK: \(x\ge-1+\sqrt{2},x\le-1-\sqrt{2}\)
Đặt \(\sqrt{x^2+2x-1}=t\left(t\ge0\right)\)
\(pt\Leftrightarrow2\left(1-x\right)t=t^2-4x\)
\(\Leftrightarrow t^2-4x+2xt-2t=0\)
\(\Leftrightarrow\left(t-2\right)\left(2x+t\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-1}=2\\\sqrt{x^2+2x-1}=-2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-5=0\\\sqrt{x^2+2x-1}=-2x\left(vn\right)\end{matrix}\right.\)
\(\Leftrightarrow x=-1\pm\sqrt{6}\left(tm\right)\)
1/ ĐKXĐ:...
\(\Leftrightarrow\sqrt{x+1+2\sqrt{x+1}+1}+\sqrt{x+1-2\sqrt{x+1}+1}=\frac{x+5}{2}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(1-\sqrt{x+1}\right)^2}=\frac{x+5}{2}\)
\(\Leftrightarrow\sqrt{x+1}+1+\left|1-\sqrt{x+1}\right|=\frac{x+5}{2}\)
Nếu \(0\ge x\ge-1\Rightarrow\left|1-\sqrt{x+1}\right|=1-\sqrt{x+1}\)
\(\Rightarrow2=\frac{x+5}{2}\Leftrightarrow x=-1\left(tm\right)\)
Nếu \(x>0\Rightarrow\left|1-\sqrt{x+1}\right|=\sqrt{x+1}-1\)
\(\Rightarrow2\sqrt{x+1}=\frac{x+5}{2}\Leftrightarrow16x+16=x^2+10x+25\)
\(\Leftrightarrow x^2-6x+9=0\Leftrightarrow x=3\left(tm\right)\)
Vậy...
Câu dưới tương tự
a: \(A=\dfrac{x+4\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\dfrac{x-1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}-2}{\sqrt{x}}\cdot\dfrac{1-1+\sqrt{x}}{1-\sqrt{x}}\)
\(=\dfrac{x+4\sqrt{x}-2-x+1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\dfrac{4\sqrt{x}-1+x-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{x+4\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}+5}{\sqrt{x}+2}\)
b: \(B=\dfrac{x\sqrt{x}+26\sqrt{x}-19}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{2x+6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\dfrac{x-4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x\sqrt{x}-x+16\sqrt{x}-16}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{x+16}{\sqrt{x}+3}\)
đa phần mình sử dụng phương pháp liên hợp nha bạn
\(\sqrt{a}-\sqrt{b}=\dfrac{a-b}{\sqrt{a}+\sqrt{b}}\)
b. điều kiện \(\dfrac{1}{4}\le x\le\dfrac{3}{8}\), pt:
\(\Leftrightarrow\sqrt{3-8x}-\sqrt{4x-1}=6x-2\\ \Leftrightarrow\dfrac{3-8x-4x+1}{\sqrt{3-8x}+\sqrt{4x-1}}=2\left(3x-1\right)\\ \Leftrightarrow\dfrac{-4\left(3x-1\right)}{\sqrt{3-8x}+\sqrt{4x-1}}=2\left(3x-1\right)\\ \Leftrightarrow2\left(3x-1\right)+\dfrac{4\left(3x-1\right)}{\sqrt{3-8x}+\sqrt{4x-1}}=0\\ \Leftrightarrow2\left(3x-1\right)\left(1+\dfrac{2}{\sqrt{3-8x}+\sqrt{4x-1}}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\left(n\right)\\1+\dfrac{2}{\sqrt{3-8x}+\sqrt{4x-1}}=0\left(vn\right)\end{matrix}\right.\)
d. điều kiện: \(x\le-4\cup x\ge0\), pt:
\(\Leftrightarrow1-\sqrt{x^2-3x+3}=\sqrt{2x^2+x+2}-\sqrt{x^2+4x}\\ \Leftrightarrow\dfrac{1-x^2+3x-3}{1+\sqrt{x^2-3x+3}}=\dfrac{2x^2+x+2-x^2-4x}{\sqrt{2x^2+x+2}+\sqrt{x^2+4x}}\\ \Leftrightarrow\dfrac{-\left(x-1\right)\left(x-2\right)}{1+\sqrt{x^2-3x+3}}=\dfrac{\left(x-1\right)\left(x-2\right)}{\sqrt{2x^2+x+2}+\sqrt{x^2+4x}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(n\right)\\x=1\left(n\right)\\\dfrac{-1}{1+\sqrt{x^2-3x+3}}=\dfrac{1}{\sqrt{2x^2+x+2}+\sqrt{x^2+4x}}\left(vn\right)\end{matrix}\right.\)
e. điều kiện:x thuộc R
\(\Leftrightarrow\sqrt{x^2+15}-4=3x-3+\sqrt{x^2+8}-3\\ \Leftrightarrow\dfrac{x^2+15-16}{\sqrt{x^2+15}+4}=3\left(x-1\right)+\dfrac{x^2+8-9}{\sqrt{x^2+8}+3}\\ \Leftrightarrow\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+15}+4}-3\left(x-1\right)-\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+8}+3}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\dfrac{\left(x+1\right)}{\sqrt{x^2+15}+4}-3-\dfrac{\left(x+1\right)}{\sqrt{x^2+8}+3}=0\left(1\right)\end{matrix}\right.\)
(1) mình không biết có vô nghiệm không nữa và cũng thua luôn
f. điều kiện: \(x\ge-2\)
bài này giải cách hơi khác một chút
đặt \(a=\sqrt{x+5}\left(\ge0\right)\\ b=\sqrt{x+2}\left(\ge0\right)\)
pt:
\(\Leftrightarrow\left(\sqrt{x+5}-\sqrt{x+2}\right)\left[\left(1+\sqrt{\left(x+5\right)\left(x+2\right)}\right)\right]\\ \Rightarrow\left(a-b\right)\left(1+ab\right)=3\left(1\right)\)
mà \(a^2-b^2=x+5-x-2=3\\ \Rightarrow\left(a-b\right)\left(a+b\right)=3\left(2\right)\)
=> (1) = (2)
\(\Leftrightarrow\left(a-b\right)\left(1+ab\right)=\left(a-b\right)\left(a+b\right)\\ \Leftrightarrow\left(a-b\right)\left(1+ab-a-b\right)=0\\ \Leftrightarrow\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\)
TH1: a=b \(\Leftrightarrow\sqrt{x+5}=\sqrt{x+2}\Leftrightarrow x+5=x+2\left(vn\right)\)
TH2: a=1\(\Leftrightarrow\sqrt{x+5}=1\Leftrightarrow x=-4\left(l\right)\)
TH3: b=1\(\Leftrightarrow\sqrt{x+2}=1\Leftrightarrow x=-1\left(n\right)\)
g. điều kiện: \(x\le-\sqrt{2}\cup x\ge\dfrac{7+\sqrt{37}}{2}\)
pt:
\(\dfrac{3x^2-7x+3-3x^2+5x+1}{\sqrt{3x^2-7x+2}+\sqrt{x^2-3x-4}}=\dfrac{x^2-2-x^2+3x-4}{\sqrt{3x^2-5x-1}+\sqrt{x^2-2}}\\ \Leftrightarrow\dfrac{-2\left(x-2\right)}{\sqrt{3x^2-7x+2}+\sqrt{x^2-3x-4}}=\dfrac{3\left(x-2\right)}{\sqrt{3x^2-5x-1}+\sqrt{x^2-2}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\left(n\right)\\\dfrac{-2}{\sqrt{3x^2-7x+2}+\sqrt{x^2-3x-4}}=\dfrac{3}{\sqrt{3x^2-5x-1}+\sqrt{x^2-2}}\left(vn\right)\end{matrix}\right.\)h. điều kiện \(x\le-2-\sqrt{7}\cup x\ge-2+\sqrt{7}\)
\(\sqrt{2x^2+x-1}-\sqrt{x^2+4x-3}=\sqrt{2x^2+4x-3}-\sqrt{3x^2+x-1}\\ \Leftrightarrow\dfrac{2x^2+x-1-x^2-4x+3}{\sqrt{2x^2+x-1}+\sqrt{x^2+4x-3}}=\dfrac{2x^2+4x-3-3x^2-x+1}{\sqrt{2x^2+4x-3}+\sqrt{3x^2+x-1}}\\ \Leftrightarrow\dfrac{x^2-3x+2}{\sqrt{2x^2+x-1}+\sqrt{x^2+4x-3}}=\dfrac{-\left(x^2-3x+2\right)}{\sqrt{2x^2+4x-3}+\sqrt{3x^2+x-1}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+2=0\Leftrightarrow x=1\left(n\right),x=2\left(n\right)\\\dfrac{1}{\sqrt{2x^2+x-1}+\sqrt{x^2+4x-3}}=\dfrac{-1}{\sqrt{2x^2+4x-3}+\sqrt{3x^2+x-1}}\left(vn\right)\end{matrix}\right.\)
(nhớ tích cho mình nha, mấy bài kia mình ko biết làm huhu)
1. ĐKXĐ:...
\(8-2x-\dfrac{2}{x}-2\sqrt{2-x^2}-2\sqrt{2-\dfrac{1}{x^2}}=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(\dfrac{1}{x^2}-\dfrac{2}{x}+1\right)+\left(2-x^2-2\sqrt{2-x^2}+1\right)+\left(2-\dfrac{1}{x^2}-2\sqrt{2-\dfrac{1}{x^2}}+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(\dfrac{1}{x}-1\right)^2+\left(\sqrt{2-x^2}-1\right)^2+\left(\sqrt{2-\dfrac{1}{x^2}}-1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\dfrac{1}{x}-1=0\\\sqrt{2-x^2}-1=0\\\sqrt{2-\dfrac{1}{x^2}}-1=0\end{matrix}\right.\)
\(\Leftrightarrow x=1\)
2.
ĐKXĐ:...
Ta có:
\(VT=x\sqrt{x}+1.\sqrt{12-x}\le\sqrt{\left(x^2+1\right)\left(x+12-x\right)}=2\sqrt{3\left(x^2+1\right)}\)
Dấu "=" xảy ra khi và chỉ khi: \(x\sqrt{12-x}=\sqrt{x}\)
\(\Leftrightarrow x^3-12x^2+x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=6-\sqrt{35}\\x=6+\sqrt{35}\end{matrix}\right.\)
a/ ĐKXĐ: \(-\frac{3}{2}\le x\le4\)
\(\sqrt{2x+3}+\sqrt{4-x}=6x-3\left(x+7-2\sqrt{\left(2x+3\right)\left(4-x\right)}\right)-10\)
\(\Leftrightarrow\sqrt{2x+3}+\sqrt{4-x}=3\left(x+7+2\sqrt{\left(2x+3\right)\left(4-x\right)}\right)-52\)
Đặt \(\sqrt{2x+3}+\sqrt{4-x}=a>0\Rightarrow a^2=x+7+2\sqrt{\left(2x+3\right)\left(4-x\right)}\)
Phương trình trở thành:
\(a=3a^2-52\Leftrightarrow3a^2-a-52=0\Rightarrow\left[{}\begin{matrix}a=-4\left(l\right)\\a=\frac{13}{3}\end{matrix}\right.\)
\(\sqrt{2x+3}+\sqrt{4-x}=\frac{13}{3}\)
Phương trình này vô nghiệm nên ko muốn giải tiếp, bạn bình phương lên và chuyển vế thôi :(
b/ ĐKXĐ: \(-\frac{1}{4}\le x\le1\)
Đặt \(\sqrt{4x+1}+2\sqrt{1-x}=a>0\Rightarrow a^2=5+4\sqrt{-4x^2+3x+1}\)
\(\Rightarrow\sqrt{-4x^2+3x+1}=\frac{a^2-5}{4}\)
Pt trở thành:
\(a+10\left(\frac{a^2-5}{4}\right)=13\)
\(\Leftrightarrow5a^2+2a-51=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{17}{5}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{-4x^2+3x+1}=\frac{a^2-5}{4}=1\)
\(\Leftrightarrow-4x^2+3x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{3}{4}\end{matrix}\right.\)
c/ \(\Leftrightarrow x^2\left(x^2+2\right)=12-x\sqrt{2x^2+4}\)
\(\Leftrightarrow x^2\left(2x^2+4\right)=24-2x\sqrt{2x^2+4}\)
Đặt \(x\sqrt{2x^2+4}=a\) ta được:
\(a^2=24-2a\Leftrightarrow a^2+2a-24=0\Leftrightarrow\left[{}\begin{matrix}a=4\\a=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\sqrt{2x^2+4}=4\left(x>0\right)\\x\sqrt{2x^2+4}=-6\left(x< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2\left(2x^2+4\right)=16\\x^2\left(2x^2+4\right)=36\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^4+2x^2-8=0\\x^4+2x^2-18=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2=2\\x^2=-4\left(l\right)\\x^2=\sqrt{19}-1\\x^2=-\sqrt{19}-1\left(l\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}< 0\left(l\right)\\x=-\sqrt{\sqrt{19}-1}\\x=\sqrt{\sqrt{19}-1}>0\left(l\right)\end{matrix}\right.\)
a/ ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow\sqrt{x+1}+\sqrt{x}+2x+1+2\sqrt{x^2+x}-2=0\)
Đặt \(\sqrt{x+1}+\sqrt{x}=a>0\Rightarrow a^2=2x+1+2\sqrt{x^2+x}\)
\(\Rightarrow a+a^2-2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x+1}+\sqrt{x}=1\)
Mà \(x\ge0\Rightarrow\left\{{}\begin{matrix}\sqrt{x}\ge0\\\sqrt{x+1}\ge1\end{matrix}\right.\) \(\Rightarrow\sqrt{x+1}+\sqrt{x}\ge1\)
Dấu "=" xảy ra khi và chỉ khi \(x=0\)
b/ ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow\sqrt{x-2}-\sqrt{x+2}+2x-2\sqrt{x^2-4}-2=0\)
Đặt \(\sqrt{x-2}-\sqrt{x+2}=a< 0\)
\(\Rightarrow a^2=2x-2\sqrt{x^2-4}\) , pt trở thành:
\(a+a^2-2=0\Rightarrow\left[{}\begin{matrix}a=1\left(l\right)\\a=-2\end{matrix}\right.\)
\(\Rightarrow\sqrt{x-2}-\sqrt{x+2}=-2\)
\(\Leftrightarrow\sqrt{x-2}+2=\sqrt{x+2}\)
\(\Leftrightarrow x+2+4\sqrt{x-2}=x+2\)
\(\Leftrightarrow4\sqrt{x-2}=0\Rightarrow x=2\)
c/ĐKXĐ: \(x\ge-1\)
\(\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}-\left(\sqrt{2x+3}+\sqrt{x+1}\right)-20=0\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=a>0\)
\(\Rightarrow a^2=3x+4+2\sqrt{2x^2+5x+3}\), ta được:
\(a^2-a-20=0\Rightarrow\left[{}\begin{matrix}a=5\\a=-4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=5\)
\(\Leftrightarrow\sqrt{2x+3}-3+\sqrt{x+1}-2=0\)
\(\Leftrightarrow\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}+\frac{x-3}{\sqrt{x+1}+2}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{2}{\sqrt{2x+3}+3}+\frac{1}{\sqrt{x+1}+2}\right)=0\)
\(\Rightarrow x=3\)
ĐKXĐ: x>=1
\(x+\sqrt{1+\sqrt{x-1}}=2\)
=>\(x-1+\sqrt{1+\sqrt{x-1}}-1=0\)
=>\(\left(x-1\right)+\dfrac{1+\sqrt{x-1}-1}{\sqrt{1+\sqrt{x-1}}+1}=0\)
=>\(\left(x-1\right)+\dfrac{\sqrt{x-1}}{\sqrt{1+\sqrt{x-1}}+1}=0\)
=>\(\sqrt{x-1}\left(\sqrt{x-1}+\dfrac{1}{\sqrt{1+\sqrt{x-1}}+1}\right)=0\)
=>\(\sqrt{x-1}=0\)
=>x=1