Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(ĐKXĐ:x\ne1;x\ge0\)
b) Với \(x\ne1;x\ge0\)thì \(A=\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}}{x-1}\right):\frac{1}{\sqrt{x}+1}=\left(\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}}{x-1}\right):\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{1}{x-1}.\frac{x-1}{\sqrt{x}-1}=\frac{1}{\sqrt{x}-1}\)c) \(A=-\frac{1}{2}\Leftrightarrow\frac{1}{\sqrt{x}-1}=-\frac{1}{2}\Leftrightarrow2=1-\sqrt{x}\Leftrightarrow\sqrt{x}=-1\)(loại vì \(\sqrt{x}\ge0\forall x\inℕ\))
Vậy không tồn tại giá trị của x để A = 1/2
\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(M=\left(\frac{2x}{x\sqrt{x}+\sqrt{x}-x-1}-\frac{1}{\sqrt{x}-1}\right):\left(1+\frac{\sqrt{x}}{x+1}\right)\)
\(\Leftrightarrow M=\left(\frac{2x}{\left(x+1\right)\left(\sqrt{x}-1\right)}-\frac{1}{\sqrt{x}-1}\right):\frac{x+\sqrt{x}+1}{x+1}\)
\(\Leftrightarrow M=\frac{2x-x-1}{\left(x+1\right)\left(\sqrt{x}+1\right)}\cdot\frac{x+1}{x+\sqrt{x}+1}\)
\(\Leftrightarrow M=\frac{x-1}{\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}\)
\(\Leftrightarrow M=\frac{x-1}{x\sqrt{x}+1}\)
Dk: x\(\ge0\)
lien hop
\(\Leftrightarrow\sqrt{x+3}-\sqrt{x}=1\)
\(\Leftrightarrow\sqrt{x+3}=2\Rightarrow x=1\)
Tìm miền xác định phải không
a)
\(1-\sqrt{2x-x^2}\)
a xác định \(\Leftrightarrow2x-x^2\ge0\)
\(0\le x\le2\)
b)
\(\sqrt{-4x^2+4x-1}\)
b xác định
\(\Leftrightarrow-4x^2+4x-1\ge0\)
\(-\left(4x^2-4x+1\right)\ge0\)
\(4x^2-4x+1\le0\)
\(\left(2x-1\right)^2\le0\)
2x - 1 = 0
x = 1/2
c)
\(\frac{x}{\sqrt{5x^2-3}}\)
c xác định
\(\Leftrightarrow5x^2-3>0\)
\(5x^2>3\)
\(x^2>\frac{3}{5}\)
\(\orbr{\begin{cases}x< -\frac{\sqrt{15}}{5}\\x>\frac{\sqrt{15}}{5}\end{cases}}\)
d)
d xác định
\(\Leftrightarrow\sqrt{x-\sqrt{2x-1}}>0\)
\(x-\sqrt{2x-1}>0\)
\(x>\sqrt{2x-1}\)
\(\hept{\begin{cases}2x-1\ge0\\x^2>2x-1\end{cases}}\)
\(\hept{\begin{cases}x\ge\frac{1}{2}\\x^2-2x+1>0\end{cases}}\)
\(\hept{\begin{cases}x\ge\frac{1}{2}\\\left(x-1\right)^2>0\end{cases}}\)
\(\hept{\begin{cases}x\ge\frac{1}{2}\\x-1\ne0\end{cases}}\)
\(\hept{\begin{cases}x\ge\frac{1}{2}\\x\ne1\end{cases}}\)
e)
e xác định
\(\Leftrightarrow\frac{-2x^2}{3x+2}\ge0\)
\(3x+2< 0\) ( vì \(-2x^2\le0\forall x\) )
\(x< -\frac{2}{3}\)
f)
f xác định
\(\Leftrightarrow x^2+x-2>0\)
\(\orbr{\begin{cases}x< -2\\x>1\end{cases}}\)
ĐKXĐ:...
\(A=\left(\frac{\sqrt{x}\left(x-1\right)-x-2}{x-1}\right):\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}-4}{x-1}\right)\)
\(A=\left(\frac{x\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)=\frac{x\left(\sqrt{x}-1\right)}{x-4}-\frac{1}{\sqrt{x}-2}\)
Câu B vt lại đề đi
\(C=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(x-1\right)\left(\sqrt{x}+1\right)}\right).\frac{\left(x-1\right)^2}{2}\)
\(C=\frac{x+\sqrt{x}-2\sqrt{x}-2-x+\sqrt{x}-2\sqrt{x}+2}{\sqrt{x}+1}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2}\)
\(C=\frac{-2\sqrt{x}\left(\sqrt{x}-1\right)}{2}=\sqrt{x}-x\)