Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) $x(x-y)+y(x-y)=(x+y)(x-y)=x^2-y^2$
b) $x^{n-1}(x+y)-y(x^{n-1}+y^{n-1})$
$=x^{n-1}.x+x^{n-1}y-yx^{n-1}-y.y^{n-1}$
$=x^n-y^n$
x(x-y)+y(x-y)
= x2-xy+xy-y2
= x2-y2
xn-1(x+y)-y(xn-1+yn-1)
= xn-1+1+xn-1y-xn-1y-y1+n-1
= xn-yn
1.x(x-y)+y(x-y)
=x^2-xy+xy-y^2
=x^2-y^2
2.x^n-1(x-y)-y(x^n-1+y^n-1)
=x^n-x^n-1y+x^n-1y-y^n
=x^n-y^n
a) x (x - y) + y (x - y) = x2 – xy+ yx – y2
= x2 – xy+ xy – y2
= x2 – y2
b) xn – 1 (x + y) – y(xn – 1 + yn – 1) =xn+ xn – 1y – yxn – 1 - yn
= xn + xn – 1y - xn – 1y - yn
= xn – yn.
a) x (x - y) + y (x - y) = x2 – xy+ yx – y2
= x2 – xy+ xy – y2
= x2 – y2
b) xn – 1 (x + y) – y(xn – 1 + yn – 1) =xn+ xn – 1y – yxn – 1 - yn
= xn + xn – 1y - xn – 1y - yn
= xn – yn.
Bài làm:
a) \(M=90.10^n-10^{n+2}+10^{n+1}\)
\(M=9.10.10^n-10^{n+2}+10^{n+1}\)
\(M=10^{n+1}\left(9-10+1\right)\)
\(M=10^{n+1}.0=0\)
b) \(N=x\left(x+y\right)-y\left(x+y\right)\)
\(N=\left(x-y\right)\left(x+y\right)\)
\(N=x^2-y^2\)
c) \(P=y\left(x^{n-1}+y^{n-1}\right)-x^{n-1}\left(x+y\right)\)
\(P=x^{n-1}y+y^n-x^n-x^{n-1}y\)
\(P=y^n-x^n\)
Học tốt!!!!
a) x (x - y) + y (x - y) = x2 – xy+ yx – y2
= x2 – xy+ xy – y2
= x2 – y2
b) xn – 1 (x + y) – y(xn – 1 + yn – 1) =xn+ xn – 1y – yxn – 1 - yn
= xn + xn – 1y - xn – 1y - yn
= xn – yn.
2.
\(4n^3+n+3=4n^3+2n^2+2n-2n^2-n-1+4=2n\left(2n^2+n+1\right)-\left(2n^2+n+1\right)+4\)-Để \(\left(4n^3+n+3\right)⋮\left(2n^2+n+1\right)\) thì \(4⋮\left(2n^2+n+1\right)\)
\(\Leftrightarrow2n^2+n+1\in\left\{1;-1;2;-2;4;-4\right\}\) (do n là số nguyên)
*\(2n^2+n+1=1\Leftrightarrow n\left(2n+1\right)=0\Leftrightarrow n=0\) (loại) hay \(n=\dfrac{-1}{2}\) (loại)
*\(2n^2+n+1=-1\Leftrightarrow2n^2+n+2=0\) (phương trình vô nghiệm)
\(2n^2+n+1=2\Leftrightarrow2n^2+n-1=0\Leftrightarrow n^2+n+n^2-1=0\Leftrightarrow n\left(n+1\right)+\left(n+1\right)\left(n-1\right)=0\Leftrightarrow\left(n+1\right)\left(2n-1\right)=0\)
\(\Leftrightarrow n=-1\) (loại) hay \(n=\dfrac{1}{2}\) (loại)
\(2n^2+n+1=-2\Leftrightarrow2n^2+n+3=0\) (phương trình vô nghiệm)
\(2n^2+n+1=4\Leftrightarrow2n^2+n-3=0\Leftrightarrow2n^2-2n+3n-3=0\Leftrightarrow2n\left(n-1\right)+3\left(n-1\right)=0\Leftrightarrow\left(n-1\right)\left(2n+3\right)=0\)\(\Leftrightarrow n=1\left(nhận\right)\) hay \(n=\dfrac{-3}{2}\left(loại\right)\)
-Vậy \(n=1\)
1. \(x^2+y^2=z^2\)
\(\Rightarrow x^2+y^2-z^2=0\)
\(\Rightarrow\left(x-z\right)\left(x+z\right)+y^2=0\)
-TH1: y lẻ \(\Rightarrow x-z;x+z\) đều lẻ.
\(x+3z-y=x+z-y+2x\) chia hết cho 2. \(\Rightarrow\)Hợp số.
-TH2: y chẵn \(\Rightarrow\)1 trong hai biểu thức \(x-z;x+z\) chia hết cho 2.
*Xét \(\left(x-z\right)⋮2\):
\(x+3z-y=x-z+4z-y\) chia hết cho 2. \(\Rightarrow\)Hợp số.
*Xét \(\left(x+z\right)⋮2\):
\(x+3z-y=x+z+2z-y\) chia hết cho 2 \(\Rightarrow\)Hợp số.
\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
\(=x^{n-1}x+x^{n-1}y-yx^{n-1}-yy^{n-1}\)
\(=x^{n-1+1}+\left(x^{n-1}y-x^{n-1}y\right)-y^{n-1+1}\)
\(=x^n-y^n\)