Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gói 5 số tự nhiên liên tiếp là a,á+1,a+2.a+3.a+4(a thuộc N)
+Nếu a chia hết cho 5 , bài toán giải xong
+ Nếu a chia 5 dư 1, đặt a=5b+1(b thuộc N ) ta có a+4=5b+1+4=(5b+5) chia hết cho 5
+ Nếu a chia 5 dư 2, đặt a=5c+2 (c thuộc N) ta có a+3=5c+2+3=(5c+5) chia hết cho 5
+ Nếu a chia 5 dư 3 , đặt a=5d+3(d thuộc N) ta có a+2=5đ +3+2=(5d+5) chia hết cho5
+ Nếu a chia 5 dư 3, đặt a= 5e +4 ( e thuốc N ) ta có a+1=5e+4+1=(5e+5) chia hết cho 5
Vậy trong 5 số tự nhiên liên tiếp, có một số chia hết cho 5
b, 19 m+19m+1,19m+2,19m+3,19m+4 là 5 số tự nhiên liên tiếp nên theo câu a có 1 số chia hết cho 5 ma 19m ko chia hết cho 5 với mọi m thuộc N
do đó : 19m+1,19m+2,19m+3,19m+4 có 1 số chia hết cho 5
=>(19m+1);(19m+2) (19m+3), (19m+4) chia hết cho 5
(a^m)^n= a^m. a^m....a^m( n số)= (a.a.a...a).(a.a.a.a...a)......(a.a.a..a)(có n tích a.a...a, có m atrong 1 tích)
=> (a.a...a)......(a.a...a) = a.a.a.a.....a => số số a nhân với nhau sẽ bằng m.n = a^ m.n
a^n .b^n = a.a.a...a(n số) . b.b...b ( n số) = (a.b) . (a.b)....(a.b) (n tích ) => = (a.b)^n
Lời giải:
Nếu $m$ hoặc $n$ chia hết cho $3$ thì hiển nhiên $mn(m^2-n^2)\vdots 3$.
Nếu $m$ và $n$ đều không chia hết cho $3$
$\Rightarrow m^2, n^2$ chia 3 dư $1$ (tính chất số chính phương)
$\Rightarrow m^2-n^2\vdots 3$
$\Rightarrow mn(m^2-n^2)\vdots 3$
Vậy $mn(m^2-n^2)\vdots 3$ với mọi $m,n$ nguyên.
Ta có : (am)n = am.am........am (n thừa số am) = am.n
Điều phải chúng minh