\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+.......+\frac{1}{20.21....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2017

\(S=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+.....+\frac{1}{20.21.22.23}\)

\(=\frac{1}{3}\left(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+......+\frac{3}{20.21.22.23}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+.....+\frac{1}{20.21.22}-\frac{1}{21.22.23}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2.3}-\frac{1}{21.22.23}\right)\)

\(=\frac{1}{2}.\frac{295}{1771}=\frac{295}{3542}\)

4 tháng 3 2019

Biến đổi ở phân số dạng tổng quát :

\(\frac{1}{n(n+1)(n+2)(n+3)}=\frac{3}{3n(n+1)(n+2)(n+3)}=\frac{3+n-n}{3n(n+1)(n+2)(n+3)}\)

\(=\frac{1}{3}\left[\frac{n+3}{n(n+1)(n+2)(n+3)}-\frac{n}{n(n+1)(n+2)(n+3)}\right]\)

\(=\frac{1}{3}\left[\frac{1}{n(n+1)(n+2)}-\frac{1}{(n+1)(n+2)(n+3)}\right]\)

Áp dụng kết quả này vào bài được :

\(\frac{1}{1\cdot2\cdot3\cdot4}=\frac{1}{3}\left[\frac{1}{1\cdot2\cdot3}-\frac{1}{2\cdot3\cdot4}\right],\frac{1}{2\cdot3\cdot4\cdot5}=\frac{1}{3}\left[\frac{1}{2\cdot3\cdot4}-\frac{1}{3\cdot4\cdot5}\right],...\)

\(\frac{1}{n(n+1)(n+2)(n+3)}=\frac{1}{3}\left[\frac{1}{n(n+1)(n+2)}-\frac{1}{(n+1)(n+2)(n+3)}\right]\)

Cộng từng vế,ta được : \(S=\frac{1}{3}\left[\frac{1}{1\cdot2\cdot3}-\frac{1}{(n+1)(n+2)(n+3)}\right]\)

P/S : Xong

4 tháng 3 2019

Ta có: S= \(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)

         \(3S=\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)

                \(=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)

                 \(=\frac{1}{1.2.3}-\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)

               \(\Rightarrow S=\frac{\frac{1}{1.2.3}-\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}}{3}\)

Vậy \(S=\frac{\frac{1}{1.2.3}-\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}}{3}\)

13 tháng 6 2020

Giúp mình với ngày kia thì học sinh giỏi rồi

21 tháng 7 2016

\(S=\frac{1}{1.1.3}+\frac{1}{2.3.5}+\frac{1}{3.5.7}+\frac{1}{4.7.9}+...+\frac{1}{100.199.201}\) 

\(S=\frac{1}{3}+\frac{2}{4.3.5}+\frac{2}{6.5.7}+\frac{2}{8.7.9}+...+\frac{2}{200.199.201}\)  

Ta có: \(\frac{2}{3.4.5}< \frac{2}{3.5}\) 

\(\Rightarrow S< \frac{1}{3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{199.201}\) 

\(\Rightarrow S< \frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{199}-\frac{1}{201}\) 

\(\Rightarrow S< \frac{1}{3}+\frac{1}{3}-\frac{1}{201}\) 

\(\Rightarrow S< \frac{2}{3}-\frac{1}{201}< \frac{2}{3}\)  

\(\Rightarrow S< \frac{2}{3}\) 

Chúc học tốt. 

20 tháng 7 2016

Chắc đề này đúng chứ. Mãi k tìm ra quy luật

9 tháng 2 2017

Biến đổi phân số ở dạng tổng quát:

\(\frac{1}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}=\frac{3}{3n\left(n+1\right)\left(n+2\right)\left(n+3\right)}=\frac{3+n-n}{3n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)

\(=\frac{1}{3}\left[\frac{n+3}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)\left(n+2\right)}\right]\)

=\(\frac{1}{3}\left[\frac{1}{n\left(n+1\right)\left(n+2\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\right]\)

Áp dụng kết quả vào bài, ta được:

\(\frac{1}{1.2.3.4}=\frac{1}{3}\left[\frac{1}{1.2.3}-\frac{1}{2.3.4}\right],\frac{1}{2.3.4.5}=\frac{1}{3}\left[\frac{1}{2.3.4}-\frac{1}{3.4.5}\right]\),...

\(\frac{1}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}=\frac{1}{3}\left[\frac{1}{n\left(n+1\right)\left(n+2\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\right]\)

Cộng từng vế, ta được:

\(S=\frac{1}{3}\left[\frac{1}{1.2.3}-\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\right].\)

9 tháng 2 2017

Thanks

27 tháng 3 2018

\(\frac{1}{n\cdot\left(n+1\right)\cdot\left(n+2\right)\cdot\left(n+3\right)}\)\(\frac{1}{3}\left(\frac{1}{n\cdot\left(n+1\right)\left(n+2\right)}-\frac{1}{\left(n+1\right)\cdot\left(n+2\right)\cdot\left(n+3\right)}\right)\)

20 tháng 7 2016

F= \(\frac{1}{1.2.3}\)\(\frac{1}{2.3.4}\)\(\frac{1}{2.3.4}\)\(\frac{1}{3.4.5}\)+....+\(\frac{1}{47.48.49}\)\(\frac{1}{48.49.50}\)

F=\(\frac{1}{1.2.3}\)\(\frac{1}{48.49.50}\)

F=\(\frac{6533}{39200}\)

AH
Akai Haruma
Giáo viên
17 tháng 8 2024

Lời giải:

$3S_n=\frac{4-1}{1.2.3.4}+\frac{5-2}{2.3.4.5}+....+\frac{(n+3)-n}{n(n+1)(n+2)(n+3)}$

$=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{n(n+1)(n+2)}-\frac{1}{(n+1)(n+2)(n+3)}$

$=\frac{1}{1.2.3}-\frac{1}{(n+1)(n+2)(n+3)}$

$\Rightarrow S_n=\frac{1}{1.2.3.3}-\frac{1}{3(n+1)(n+2)(n+3)}$

$\Rightarrow S_n=\frac{1}{18}-\frac{1}{3(n+1)(n+2)(n+3)}$

7 tháng 7 2018

\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{47.48.49.50}\)

\(=\frac{1}{3}\cdot\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{47.48.49}-\frac{1}{48.49.50}\right)\)

\(=\frac{1}{3}\cdot\left(\frac{1}{1.2.3}-\frac{1}{48.49.50}\right)\)

\(=\frac{1}{3}\cdot\frac{6533}{39200}=\frac{6533}{117600}\)