K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Vì hai làm lượng giác \(y = \sin x,y = \cos x\) liên tục trên \(\mathbb{R}\)

\( \Rightarrow f\left( x \right) = \sin x + \cos x\) liên tục trên \(\mathbb{R}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Ta có \(f\left( {{x_0}} \right) = {x_0} + 1;\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \left( {x + 1} \right) = \mathop {\lim }\limits_{x \to {x_0}} x + 1 = {x_0} + 1\)

\( \Rightarrow \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)

Vậy hàm số \(f\left( x \right)\) liên tục tại \({x_0}.\)

b) Dựa vào đồ thị hàm số ta thấy: Đồ thị hàm số là một đường thẳng liền mạch với mọi giá trị \(x \in \mathbb{R}.\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\), \(f\left( x \right) = \frac{{{x^2} - 2x}}{x}\) là hàm phân thức hữu tỉ nên liên tục trên từng khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\).

Ta có: \(f\left( 0 \right) = a\)

\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2} - 2x}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{x\left( {x - 2} \right)}}{x} = \mathop {\lim }\limits_{x \to 0} \left( {x - 2} \right) = 0 - 2 =  - 2\)

Để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) thì hàm số \(y = f\left( x \right)\) phải liên tục tại điểm \({x_0} = 0\).  Khi đó:

\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right) \Leftrightarrow a =  - 2\).

Vậy với \(a =  - 2\) thì hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

+) Với mỗi \({x_0} \in \left( { - \infty ;2} \right)\) có \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \left( {x - 1} \right) = {x_0} - 1 = f\left( {{x_0}} \right)\)

Do đó hàm số \(f\left( x \right)\) liên tục tại \({x_0} \in \left( { - \infty ;2} \right).\)

+) Với mỗi \({x_0} \in \left( {2; + \infty } \right)\) có \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \left( { - x} \right) =  - {x_0} = f\left( {{x_0}} \right)\)

Do đó hàm số \(f\left( x \right)\) liên tục tại \({x_0} \in \left( {2; + \infty } \right).\)

+) Với mỗi \({x_0} = 2\) có \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {x - 1} \right) = 2 - 1 = 1;\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( { - x} \right) =  - 2\)

\( \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right)\) do đó không tồn tại \(\mathop {\lim }\limits_{x \to 2} f\left( x \right).\)

Vậy hàm số \(f\left( x \right)\) gián đoạn tại \({x_0} = 2\) nên hàm số \(f\left( x \right)\) không liên tục trên \(\mathbb{R}.\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Trên các khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( { - 2; + \infty } \right)\), \(f\left( x \right) = \frac{{{x^2} - 4}}{{x + 2}}\) là hàm phân thức hữu tỉ nên liên tục trên từng khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( { - 2; + \infty } \right)\).

Ta có: \(f\left( { - 2} \right) = a\)

\(\mathop {\lim }\limits_{x \to  - 2} f\left( x \right) = \mathop {\lim }\limits_{x \to  - 2} \frac{{{x^2} - 4}}{{x + 2}} = \mathop {\lim }\limits_{x \to  - 2} \frac{{\left( {x - 2} \right)\left( {x + 2} \right)}}{{x + 2}} = \mathop {\lim }\limits_{x \to  - 2} \left( {x - 2} \right) =  - 2 - 2 =  - 4\)

Để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) thì hàm số \(y = f\left( x \right)\) phải liên tục tại điểm \({x_0} =  - 2\).  Khi đó:

\(\mathop {\lim }\limits_{x \to  - 2} f\left( x \right) = f\left( { - 2} \right) \Leftrightarrow a =  - 4\).

Vậy với \(a =  - 4\) thì hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Trên các khoảng \(\left( { - \infty ;5} \right)\) và \(\left( {5; + \infty } \right)\), \(f\left( x \right) = \frac{{{x^2} - 25}}{{x - 5}}\) là hàm phân thức hữu tỉ nên liên tục trên từng khoảng \(\left( { - \infty ;5} \right)\) và \(\left( {5; + \infty } \right)\).

Ta có: \(f\left( 5 \right) = a\)

\(\mathop {\lim }\limits_{x \to 5} f\left( x \right) = \mathop {\lim }\limits_{x \to 5} \frac{{{x^2} - 25}}{{x - 5}} = \mathop {\lim }\limits_{x \to 5} \frac{{\left( {x - 5} \right)\left( {x + 5} \right)}}{{x - 5}} = \mathop {\lim }\limits_{x \to 5} \left( {x + 5} \right) = 5 + 5 = 10\)

Để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) thì hàm số \(y = f\left( x \right)\) phải liên tục tại điểm \({x_0} = 5\).  Khi đó: \(\mathop {\lim }\limits_{x \to 5} f\left( x \right) = f\left( 5 \right) \Leftrightarrow a = 10\).

Vậy với \(a = 10\) thì hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Hàm số \(f\left( x \right) = {x^2} + \sin x\) có tập xác định là \(\mathbb{R}\).

Hàm số x2 và sinx liên tục trên \(\mathbb{R}\) nên hàm số \(f\left( x \right) = {x^2} + \sin x\) liên tục trên \(\mathbb{R}\).

b) Hàm số \(g\left( x \right) = {x^4} - {x^2} + \frac{6}{{x - 1}}\) có tập xác định là \(\mathbb{R}\backslash \left\{ 1 \right\}.\)

Hàm số \({x^4} - {x^2}\) liên tục trên toàn bộ tập xác định

Hàm số \(\frac{6}{{x - 1}}\) liên tục trên các khoảng \(\left( {-\infty ;1} \right)\) và \(\left( {1; + \infty } \right).\)

Vậy hàm số đã cho liên tục trên các khoảng \(\left( {-\infty ;1} \right)\) và \(\left( {1; + \infty } \right).\)

c) Hàm số \(h\left( x \right) = \frac{{2x}}{{x - 3}} + \frac{{x - 1}}{{x + 4}}\) có tập xác định \(D = \mathbb{R}\backslash \left\{ {-4;3} \right\}.\)

Hàm số \(\frac{{2x}}{{x - 3}}\)  liên tục trên các khoảng \(\left( {-\infty ;3} \right)\) và \(\left( {3; + \infty } \right).\)

Hàm \(\frac{{x - 1}}{{x + 4}}\)  liên tục trên các khoảng \(\left( {-\infty ;-4} \right)\) và \(\left( {-4; + \infty } \right).\)

Vậy hàm số đã cho liên tục trên các khoảng  \(\left( {-\infty ;-4} \right)\), \(\left( {-4;3} \right)\), \(\left( {3; + \infty } \right).\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

• Xét hàm số \(f\left( x \right) = 2x - \sin x\) có tập xác định \(D = \mathbb{R}\).

Vậy hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\).

• Xét hàm số \(g\left( x \right) = \sqrt {x - 1} \)

ĐKXĐ: \(x - 1 \ge 0 \Leftrightarrow x \ge 1\)

Hàm số \(g\left( x \right) = \sqrt {x - 1} \) có tập xác định \(D = \left[ {1; + \infty } \right)\).

Hàm số \(g\left( x \right) = \sqrt {x - 1} \) là hàm căn thức nên liên tục trên khoảng \(\left( {1; + \infty } \right)\).

Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \sqrt {x - 1}  = \sqrt {1 - 1}  = 0 = g\left( 1 \right)\)

Do đó hàm số \(g\left( x \right) = \sqrt {x - 1} \) liên tục tại điểm \({x_0} = 1\).

Vậy hàm số \(g\left( x \right) = \sqrt {x - 1} \) liên tục trên nửa khoảng \(\left[ {1; + \infty } \right)\).

• Xét hàm số \(y = f\left( x \right).g\left( x \right) = \left( {2x - \sin x} \right)\sqrt {x - 1} \)

Do hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) đều liên tục tại mọi điểm \({x_0} \in \left[ {1; + \infty } \right)\) nên hàm số \(y = f\left( x \right).g\left( x \right)\) liên tục trên nửa khoảng \(\left[ {1; + \infty } \right)\).

• Xét hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{2x - \sin x}}{{\sqrt {x - 1} }}\)

Do hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) đều liên tục tại mọi điểm \({x_0} \in \left[ {1; + \infty } \right)\) nên hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}}\) liên tục trên khoảng \(\left( {1; + \infty } \right)\).

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) ĐKXĐ: \({x^2} - 4 \ne 0 \Leftrightarrow x \ne  \pm 2\)

Vậy hàm số có TXĐ: \(D = \mathbb{R}\backslash \left\{ { \pm 2} \right\}\).

Hàm số \(f\left( x \right) = \frac{x}{{{x^2} - 4}}\) là hàm phân thức hữu tỉ nên nó liên tục trên các khoảng \(\left( { - \infty ; - 2} \right),\left( { - 2;2} \right)\) và \(\left( {2; + \infty } \right)\).

b) ĐKXĐ: \(9 - {x^2} \ge 0 \Leftrightarrow  - 3 \le x \le 3\)

Vậy hàm số có TXĐ: \(D = \left[ { - 3;3} \right]\).

Hàm số \(g\left( x \right) = \sqrt {9 - {x^2}} \) là hàm căn thức nên nó liên tục trên khoảng \(\left( { - 3;3} \right)\).

Ta có: \(\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ - }} \sqrt {9 - {x^2}}  = \sqrt {9 - {3^2}}  = 0 = f\left( 3 \right)\)

\(\mathop {\lim }\limits_{x \to  - {3^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {3^ + }} \sqrt {9 - {x^2}}  = \sqrt {9 - {{\left( { - 3} \right)}^2}}  = 0 = f\left( { - 3} \right)\)

Vậy hàm số \(g\left( x \right) = \sqrt {9 - {x^2}} \) là liên tục trên đoạn \(\left[ { - 3;3} \right]\).

c) ĐKXĐ: \(\sin x \ne 0 \Leftrightarrow x \ne \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\)

Vậy hàm số có TXĐ: \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\).

Hàm số \(h\left( x \right) = \cos x + \tan x\) là hàm lượng giác nên nó liên tục trên các khoảng \(\left( { - \frac{\pi }{2} + k\pi ;\frac{\pi }{2} + k\pi } \right),k \in \mathbb{Z}\).

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Ta có \(f\left( x \right),g\left( x \right)\) là các hàm đa thức nên các hàm số \(f\left( x \right),g\left( x \right)\) liên tục trên \(\mathbb{R}\)

Vậy các hàm số \(f\left( x \right),g\left( x \right)\) liên tục tại \(x = 2\)

b) \(\begin{array}{l}f\left( x \right) + g\left( x \right) = {x^3} + {x^2} + x + 1\\f\left( x \right) - g\left( x \right) = {x^3} - {x^2} + x - 1\\f\left( x \right).g\left( x \right) = \left( {{x^3} + x} \right)\left( {{x^2} + 1} \right) = {x^5} + 2{x^3} + x\\\frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{{x^3} + x}}{{{x^2} + 1}} = \frac{{x\left( {{x^2} + 1} \right)}}{{{x^2} + 1}} = x\end{array}\)

Ta có \(f\left( x \right) + g\left( x \right);f\left( x \right) - g\left( x \right);f\left( x \right).g\left( x \right);\frac{{f\left( x \right)}}{{g\left( x \right)}}\) là các hàm đa thức nên các hàm số \(f\left( x \right),g\left( x \right)\) liên tục trên \(\mathbb{R}\)

Vậy các hàm số \(f\left( x \right) + g\left( x \right);f\left( x \right) - g\left( x \right);f\left( x \right).g\left( x \right);\frac{{f\left( x \right)}}{{g\left( x \right)}}\) liên tục tại \(x = 2\)