Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có một số tự nhiên n không chia hết cho chính nó. Mệnh đề này đúng vì n=0 ∈ N, 0 không chia hết cho 0.
b) ∃x ∈ Q: x2=2;= “Bình phương của một số hữu tỉ là một số khác 2”. Mệnh đề đúng.
c) ∀x ∈ R: x< x+1; = ∃x ∈ R: x≥x+1= “Tồn tại số thực x không nhỏ hơn số ấy cộng với 1”. Mệnh đề này sai.
d) ∃x ∈ R: 3x=x2+1; = ∀x ∈ R: 3x ≠ x2+1= “Tổng của 1 với bình phương của số thực x luôn luôn không bằng 3 lần số x”
Đây là mệnh đề sai
a) Có một số tự nhiên n không chia hết cho chính nó. Mệnh đề này đúng vì n=0 ∈ N, 0 không chia hết cho 0.
b) = "Bình phương của một số hữu tỉ là một số khác 2". Mệnh đề đúng.
c) = ∃x ∈ R: x≥x+1= "Tồn tại số thực x không nhỏ hơn số ấy cộng với 1". Mệnh đề này sai.
d) = ∀x ∈ R: 3x ≠ x2+1= "Tổng của 1 với bình phương của số thực x luôn luôn không bằng 3 lần số x"
Đây là mệnh đề sai vì với x= ta có :
3 =+1
Xem thêm tại: http://loigiaihay.com/bai-7-trang-10-sgk-dai-so-10-c45a4787.html#ixzz45gTdKfVY
a) ∀x ∈ R: x2>0= “Bình phương của một số thực là số dương”. Sai vì 0∈R mà 02=0.
b) ∃ n ∈ N: n2=n = “Có số tự nhiên n bằng bình phương của nó”. Đúng vì 1 ∈ N, 12=1.
c) ∀n ∈ N: n ≤ 2n = “Một số tự nhiên thì không lớn hơn hai lần số ấy”. Đúng.
d) ∃ x∈R: x<1/x = “Có số thực x nhỏ hơn nghịch đảo của nó”. Mệnh đề đúng. chẳng hạn 0,5 ∈ R và 0,5 <1/0,5.
a) ∀x ∈ R: x2>0= "Bình phương của một số thực là số dương". Sai vì 0∈R mà 02=0.
b) ∃ n ∈ N: n2=n = "Có số tự nhiên n bằng bình phương của nó". Đúng vì 1 ∈ N, 12=1.
c) ∀n ∈ N: n ≤ 2n = "Một số tự nhiên thì không lớn hơn hai lần số ấy". Đúng.
d) ∃ x∈R: x< = "Có số thực x nhỏ hơn nghịch đảo của nó". Mệnh đề đúng. chẳng hạn 0,5 ∈ R và 0,5 <.
a/ Đúng, khi \(\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
b/ Sai, ví dụ \(x=0\) thì \(2x^2-3x-5\ne0\)
c/ Sai, khi \(x=-1\)
d/ Sai, \(3x^2+2x-1=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\frac{1}{3}\end{matrix}\right.\) mà \(\left\{-1;-\frac{1}{3}\right\}\notin N\)
e/ Đúng, nhìn câu trên ta thấy pt có 2 nghiệm hữu tỉ
f/ Đúng, vì \(x^2+2x+5=\left(x+1\right)^2+4>0\) \(\forall x\in R\)
Bài 1
d, \(x^2+2xy+y^2-2x-2y+1\)
\(\Rightarrow x^2+y^2=1+2xy-2y-2x\)
\(\Rightarrow\left(x+y-1\right)^2\)
Bài 2:
a, \(\left(x+1\right)\left(x+1\right)=\left(x+2\right)\left(x+5\right)\)
\(\Leftrightarrow\left(x+1\right)^2=x^2+5x+2x+10\)
\(\Leftrightarrow x^2+2x+1=x^2=5x+2x+10\)
\(\Leftrightarrow-5x=9\)
\(\Leftrightarrow x=-\frac{9}{5}\)
b,\(\left(x+3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\)
c, \(4x^2-9=0\)
\(\Leftrightarrow4x^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\\frac{3}{2}\end{matrix}\right.\)
d,\(\left(4x-5\right)^2-\left(3x-4\right)^2=0\)
\(\Leftrightarrow16x^2-40x+25-\left(9x^2-24x+16\right)=0\)
\(\Leftrightarrow16x^2-40x+25-9x^2+24x-16=0\)
\(\Leftrightarrow7x^2-16x+9=0\)
\(\Leftrightarrow x=\frac{-\left(-16\right)\pm\sqrt{\left(-16\right)^2-4.7.9}}{14}\)
\(\Leftrightarrow x=\frac{16\pm\sqrt{256-252}}{14}\)
\(\Leftrightarrow x=\frac{16\pm\sqrt{4}}{14}\)
\(\Leftrightarrow x=\frac{16\pm2}{14}\)
\(\Leftrightarrow x=\left[{}\begin{matrix}\frac{16+2}{14}\\\frac{16-2}{14}\end{matrix}\right.\)
\(\Leftrightarrow x=\left[{}\begin{matrix}\frac{9}{7}\\1\end{matrix}\right.\)
1.a)\(3x-3y+x^2-2xy+y^2\)
\(=3\left(x-y\right)+\left(x-y\right)^2\)
\(=\left(x-y\right)\left(3+x-y\right)\)
d)\(x^2+2xy+y^2-2x-2y+1\)
\(=\left(x+y\right)^2-2\left(x+y\right)+1\)
\(=\left(x+y+1\right)^2\)
2.a)\(\left(x+1\right)\left(x+1\right)=\left(x+2\right)\left(x+5\right)\)
\(\Leftrightarrow\left(x+1\right)^2=x^2+5x+2x+10\)
\(\Leftrightarrow x^2+2x+1-x^2-7x-10=0\)
\(\Leftrightarrow-5x-9=0\)
\(\Leftrightarrow-5x=9\)
\(\Leftrightarrow x=-\frac{9}{5}\). Vậy \(S=\left\{-\frac{9}{5}\right\}\)
b)\(\left(x+3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\).Vậy \(S=\left\{-3;-5\right\}\)
c)\(4x^2-9=0\)
\(\Leftrightarrow\left(2x+3\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\x=\frac{3}{2}\end{matrix}\right.\). Vậy \(S=\left\{\pm\frac{3}{2}\right\}\)
d)\(\left(4x-5\right)^2-\left(3x-4\right)^2=0\)
\(\Leftrightarrow\left(4x-5+3x-4\right)\left(4x-5-3x+4\right)=0\)
\(\Leftrightarrow\left(7x-9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}7x-9=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{9}{7}\\x=1\end{matrix}\right.\). Vậy \(S=\left\{1;\frac{9}{7}\right\}\)
3.Ta có:
8x^2-26x+m 2x-3 4x-7 -14x+m m+21
Để \(A\left(x\right)⋮B\left(x\right)\) thì: \(m+21⋮2x-3\)
\(\Rightarrow m+21=0\)
\(\Rightarrow m=-21\)
Vậy...!
Lời giải:
PT (2) $\Leftrightarrow x+y+xy+1=0$
$\Leftrightarrow (x+1)(y+1)=0$
$\Rightarrow x+1=0$ hoặc y+1=0$
Nếu $x+1=0$ suy ra $x=-1$. Thay vào PT $(1)$ suy ra $y^2=2\Rightarrow y=\pm \sqrt{2}$
Nếu $y+1=0\Rightarrow y=-1$. Thay vào PT $(1)$ suy ra $x^2=2\Rightarrow x=\pm \sqrt{2}$
Vậy $(x,y)=(-1; \pm \sqrt{2}); (\pm \sqrt{2}; -1)$
Từ đây ta suy ra:
A đúng.
B đúng
C sai
D đúng