K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 7 2020

ĐKXĐ: \(cos3x\ne-1\Leftrightarrow3x\ne\pi+k2\pi\Rightarrow x\ne\frac{\pi}{3}+\frac{k2\pi}{3}\)

Các miền xác định của hàm đối xứng nhau

\(f\left(-x\right)=\frac{1+sin^2\left(-2x\right)}{1+cos\left(-3x\right)}=\frac{1+sin^22x}{1+cos3x}=f\left(x\right)\)

Hàm đã cho là hàm chẵn

26 tháng 9 2021

a, \(f\left(-x\right)=sin^2\left(-2x\right)+cos\left(-3x\right)=sin^22x+cos3x=f\left(x\right)\)

\(\Rightarrow\) Là hàm số chẵn.

26 tháng 9 2021

b, \(f\left(-x\right)=\sqrt{\left(-x\right)^2-16}=\sqrt{x^2-16}=f\left(x\right)\)

\(\Rightarrow\) Là hàm số chẵn.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Tập xác định của hàm số là \(D = \mathbb{R}\;\backslash \left\{ 0 \right\}\)

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D

Ta có: \(g\left( { - x} \right) = \frac{1}{{ - x}} =  - \frac{1}{x} =  - g\left( x \right),\;\forall x\; \in \;D\).

Vậy \(g\left( x \right) = \frac{1}{x}\) là hàm số lẻ

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

Lời giải:

a. TXĐ: $D=\mathbb{R}$

Xét $x=3\in D$ thì $-3\in D$

$y(-3)=3^2\sin (-3+3)=0; -y(-3)=0$ 

$y(3)=3^2\sin 6\neq 0$

Do đó: $y(3)\neq y(-3)$ và $y(3)\neq -y(-3)$ nên hàm không chẵn cũng không lẻ.

b. ĐKXĐ: $D=\mathbb{R}$

Với $x\in D$ thì $-x\in D$

$y(-x)=\sqrt{2-\sin ^2(-3x)}=\sqrt{2-(-\sin 3x)^2}$

$=\sqrt{2-(\sin 3x)^2}=y(x)$

Do đó hàm là hàm chẵn. 

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

• Xét hàm số \(f\left( x \right) = 2x - \sin x\) có tập xác định \(D = \mathbb{R}\).

Vậy hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\).

• Xét hàm số \(g\left( x \right) = \sqrt {x - 1} \)

ĐKXĐ: \(x - 1 \ge 0 \Leftrightarrow x \ge 1\)

Hàm số \(g\left( x \right) = \sqrt {x - 1} \) có tập xác định \(D = \left[ {1; + \infty } \right)\).

Hàm số \(g\left( x \right) = \sqrt {x - 1} \) là hàm căn thức nên liên tục trên khoảng \(\left( {1; + \infty } \right)\).

Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \sqrt {x - 1}  = \sqrt {1 - 1}  = 0 = g\left( 1 \right)\)

Do đó hàm số \(g\left( x \right) = \sqrt {x - 1} \) liên tục tại điểm \({x_0} = 1\).

Vậy hàm số \(g\left( x \right) = \sqrt {x - 1} \) liên tục trên nửa khoảng \(\left[ {1; + \infty } \right)\).

• Xét hàm số \(y = f\left( x \right).g\left( x \right) = \left( {2x - \sin x} \right)\sqrt {x - 1} \)

Do hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) đều liên tục tại mọi điểm \({x_0} \in \left[ {1; + \infty } \right)\) nên hàm số \(y = f\left( x \right).g\left( x \right)\) liên tục trên nửa khoảng \(\left[ {1; + \infty } \right)\).

• Xét hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{2x - \sin x}}{{\sqrt {x - 1} }}\)

Do hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) đều liên tục tại mọi điểm \({x_0} \in \left[ {1; + \infty } \right)\) nên hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}}\) liên tục trên khoảng \(\left( {1; + \infty } \right)\).

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Hàm số \(f\left( x \right) = {x^2} + \sin x\) có tập xác định là \(\mathbb{R}\).

Hàm số x2 và sinx liên tục trên \(\mathbb{R}\) nên hàm số \(f\left( x \right) = {x^2} + \sin x\) liên tục trên \(\mathbb{R}\).

b) Hàm số \(g\left( x \right) = {x^4} - {x^2} + \frac{6}{{x - 1}}\) có tập xác định là \(\mathbb{R}\backslash \left\{ 1 \right\}.\)

Hàm số \({x^4} - {x^2}\) liên tục trên toàn bộ tập xác định

Hàm số \(\frac{6}{{x - 1}}\) liên tục trên các khoảng \(\left( {-\infty ;1} \right)\) và \(\left( {1; + \infty } \right).\)

Vậy hàm số đã cho liên tục trên các khoảng \(\left( {-\infty ;1} \right)\) và \(\left( {1; + \infty } \right).\)

c) Hàm số \(h\left( x \right) = \frac{{2x}}{{x - 3}} + \frac{{x - 1}}{{x + 4}}\) có tập xác định \(D = \mathbb{R}\backslash \left\{ {-4;3} \right\}.\)

Hàm số \(\frac{{2x}}{{x - 3}}\)  liên tục trên các khoảng \(\left( {-\infty ;3} \right)\) và \(\left( {3; + \infty } \right).\)

Hàm \(\frac{{x - 1}}{{x + 4}}\)  liên tục trên các khoảng \(\left( {-\infty ;-4} \right)\) và \(\left( {-4; + \infty } \right).\)

Vậy hàm số đã cho liên tục trên các khoảng  \(\left( {-\infty ;-4} \right)\), \(\left( {-4;3} \right)\), \(\left( {3; + \infty } \right).\)

Cho hàm số \(y = \sin x\).a) Xét tính chẵn, lẻ của hàm sốb) Hoàn thành bảng giá trị sau của hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) bằng cách tính giá trị của \(\sin x\) với những x không âm, sau đó sử dụng kết quả câu a để suy ra giá trị tương ứng của \(\sin x\) với những x âm.     \(x\)            \( - \pi \)            \( - \frac{{3\pi }}{4}\)            \( - \frac{\pi }{2}\)            \( - \frac{\pi...
Đọc tiếp

Cho hàm số \(y = \sin x\).

a) Xét tính chẵn, lẻ của hàm số

b) Hoàn thành bảng giá trị sau của hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) bằng cách tính giá trị của \(\sin x\) với những x không âm, sau đó sử dụng kết quả câu a để suy ra giá trị tương ứng của \(\sin x\) với những x âm.

     \(x\)

            \( - \pi \)

            \( - \frac{{3\pi }}{4}\)

            \( - \frac{\pi }{2}\)

            \( - \frac{\pi }{4}\)

0

            \(\frac{\pi }{4}\)

            \(\frac{\pi }{2}\)

            \(\frac{{3\pi }}{4}\)

            \(\pi \)

\(\sin x\)

?

?

?

?

?

?

?

?

?

Bằng cách lấy nhiều điểm \(M\left( {x;\sin x} \right)\) với \(x \in \left[ { - \pi ;\pi } \right]\) và nối lại ta được đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\).

c) Bằng cách làm tương tự câu b cho các đoạn khác có độ dài bằng chu kỳ \(T = 2\pi \), ta được đồ thị của hàm số \(y = \sin x\) như hình dưới đây.

Từ đồ thị ở Hình 1.14, hãy cho biết tập giá trị, các khoảng đồng biến, các khoảng nghịch biến của hàm số \(y = \sin x\)

1
HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Tập xác định của hàm số là \(D = \mathbb{R}\)

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D

Ta có: \(f\left( { - x} \right) = \sin \left( { - x} \right) =  - \sin x =  - f\left( x \right),\;\forall x\; \in \;D\)

Vậy \(y = \sin x\) là hàm số lẻ.

b)

     \(x\)

            \( - \pi \)

            \( - \frac{{3\pi }}{4}\)

    \( - \frac{\pi }{2}\)

            \( - \frac{\pi }{4}\)

0

            \(\frac{\pi }{4}\)

            \(\frac{\pi }{2}\)

            \(\frac{{3\pi }}{4}\)

            \(\pi \)

            \(\sin x\)

            \(0\)

    \( - \frac{{\sqrt 2 }}{2}\)

            \( - 1\)

    \( - \frac{{\sqrt 2 }}{2}\)

0

\(\frac{{\sqrt 2 }}{2}\)

1

\(\frac{{\sqrt 2 }}{2}\)

0

 

c) Từ đồ thị trên, ta thấy hàm số \(y = \sin x\) có tập xác định là \(\mathbb{R}\), tập giá trị là [-1;1] và đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\) và nghịch biến trên mỗi khoảng \(\left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } \right),\;k\; \in \;\mathbb{Z}.\)

NV
17 tháng 12 2020

Miền xác định của hàm là miền đối xứng

\(y\left(-x\right)=cot\left(-x\right)-sin\left(-x-1\right)=-cotx+sin\left(x+1\right)\)

\(y\left(-x\right)\ne y\left(x\right)\) mà cũng khác \(-y\left(x\right)\) nên hàm không chẵn không lẻ

15 tháng 1 2017

Đáp án D

Ta có tập xác định D = R.

Hàm số y = f(x) = 0 có:

f(-x) = 0 và –f(x) = 0

=> f(x) = f(-x) = -f(x)  vừa thỏa mãn tính chất của hàm số chẵn, vừa thỏa mãn tính chất của hàm số lẻ, nên đây là hàm số vừa chẵn vừa lẻ.