Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(DA\cdot DB+EA\cdot EC\)
\(=HD^2+HE^2\)
\(=AH^2=HB\cdot HC\)
a: góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hcn
b: DA*DB+EA*EC
=DH^2+EH^2
=DE^2=AH^2=HB*HC
a, Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=\sqrt{32}=4\sqrt{2}\)cm
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{16}{4\sqrt{2}}=\dfrac{4}{\sqrt{2}}=\dfrac{4\sqrt{2}}{2}=2\sqrt{2}\)cm
* Áp dụng hệ thức :\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{16}{4\sqrt{2}}=\dfrac{4}{\sqrt{2}}=2\sqrt{2}\)cm
-> HC = BC - HB = 4\(\sqrt{2}\)- 2\(\sqrt{2}\) = 2 \(\sqrt{2}\)
sinB = \(\dfrac{AC}{BC}=\dfrac{4}{4\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)
cosB = \(\dfrac{AB}{BC}=\dfrac{4}{4\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)
tanB = \(\dfrac{AC}{AB}=\dfrac{4}{4}=1\)
cotaB = \(\dfrac{AB}{AC}=\dfrac{4}{4}=1\)
tương tự với tỉ số lượng giác ^C
b, bạn cần cm cái gì ? ;-;
b: Xét tứ giác AEHD có
\(\widehat{EAD}=\widehat{AEH}=\widehat{ADH}=90^0\)
Do đó: AEHD là hình chữ nhật
Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB
nên \(BD\cdot DA=DH^2\)
Xét ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC
nên \(CE\cdot EA=EH^2\)
Xét ΔEHD vuông tại H, ta được:
\(ED^2=EH^2+HD^2\)
hay \(ED^2=DA\cdot DB+EA\cdot EC\)
Xét tứ giác ADHE có:
\(\widehat{BAC}=\widehat{ADH}=\widehat{AEH}=90^0\)
=> Tư giác ADHE là hình chữ nhật
\(\Rightarrow DE=AH\left(1\right)\)
Áp dụng HTL trong tam giác ABC vuông tại A có đường cao AH
\(AH^2=HB.HC\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow DE^2=HB.HC\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH^2=HB\cdot HC\left(1\right)\)
Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó: ADHE là hình chữ nhật
Suy ra: AH=DE(2)
Từ (1) và (2) suy ra \(DE^2=HB\cdot HC\)
Theo đkđb thì $AI^2=AD.AE$. Vì vậy, nếu muốn $AI^2=DE.AE$ thì $AD=DE$ (điều này vô lý vì $AD<DE$ theo tính chất cạnh huyền trong tam giác vuông.
a: BC=BH+CH
=2+8
=10(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH=\sqrt{2\cdot8}=4\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AB=\sqrt{2\cdot10}=2\sqrt{5}\left(cm\right)\\AC=\sqrt{8\cdot10}=4\sqrt{5}\left(cm\right)\end{matrix}\right.\)
b: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
=>DE=AH
c: ΔHDB vuông tại D
mà DM là đường trung tuyến
nên DM=HM=MB
\(\widehat{EDM}=\widehat{EDH}+\widehat{MDH}\)
\(=\widehat{EAH}+\widehat{MHD}\)
\(=90^0-\widehat{C}+\widehat{C}=90^0\)
=>DE vuông góc DM
a: Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HD là đường cao
nên \(AD\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AD\cdot AC\)
`a,` Ta có `ΔABC` vuông tại `A,`
`=>` `HBA` là góc vuông, có số đo là `90^o`
`b,` Ta có `ΔABC` vuông tại `A`
`=>` `AH` là đường cao của `ΔABC`
Theo định lý Euclid, trong một tam giác vuông, đường cao chia tam giác thành hai tam giác nhỏ có tỉ lệ bằng độ dài các cạnh gần góc vuông.
Vậy ta có: `(AD)/(AB)` `=` `(HD)/(HC)`
Vì `ΔABC` vuông tại `A`
`=> AB` `= AC`
`=>` `(AD)/(AC)` `=` `(HD)/(HC)`
Nhân cả hai vế của phương trình trên với `AC,` ta có:
`AD .` `(AC)/(AC)` `= HD .` `(HC)/(HC)`
`AD =` `HD.``HC`
`=>` `AD.AC` `=` `HB.HC.`
a) 90o,
b).............................. =) AD.AC = HB.HC