Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(I=\int\limits^1_0\dfrac{x+1}{\left(x^2+1\right)\sqrt{x^3+1}}dx+\int\limits^{+\infty}_1\dfrac{x+1}{\left(x^2+1\right)\sqrt{x^3+1}}dx=I_1+I_2\)
Do hàm \(f\left(x\right)=\dfrac{x+1}{\left(x^2+1\right)\sqrt{x^3+1}}\) liên tục và xác định trên \(\left[0;1\right]\) nên \(I_1\) là 1 tích phân xác định hay \(I_1\) hội tụ
Xét \(I_2\) , ta có \(f\left(x\right)=\dfrac{x+1}{\left(x^2+1\right)\sqrt{x^3+1}}>0\) với mọi \(x\ge1\)
Đặt \(g\left(x\right)=\dfrac{1}{x^2\sqrt{x}}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{\left(x+1\right)x^2\sqrt{x}}{\left(x^2+1\right)\sqrt{x^3+1}}=1\) (1)
\(\int\limits^{+\infty}_1g\left(x\right)dx=\int\limits^{+\infty}_1\dfrac{1}{x^2\sqrt{x}}dx\) hội tụ do \(\alpha=\dfrac{5}{2}>1\) (2)
(1);(2) \(\Rightarrow I_2\) hội tụ
\(\Rightarrow I\) hội tụ
Đề bài là: \(\int\limits^{+\infty}_0\dfrac{ln^3x}{x}dx\) hay \(\int\limits^{+\infty}_0\dfrac{x.\left(ln^3x\right)}{x}dx\) nhỉ?
Nhìn cái đề vô lý quá, sao ko rút gọn x luôn cho rồi? Nó là cái tích phân thứ nhất thì hợp lý hơn?
Khi \(x\rightarrow+\infty\) thì \(\dfrac{1}{x^5+2x}\sim\dfrac{1}{x^5}\)
Mà \(\int\limits^{+\infty}_1\dfrac{1}{x^5}dx\) hội tụ \(\Rightarrow\int\limits^{+\infty}_1\dfrac{1}{x^5+2x}dx\) hội tụ
\(f\left(x\right)=\dfrac{x^2-1}{x^4+1}\) dương trên miền đã cho
Ta có: \(\dfrac{x^2-1}{x^4+1}\sim\dfrac{x^2}{x^4}=\dfrac{1}{x^2}\) khi \(x\rightarrow+\infty\)
Mà \(\int\limits^{+\infty}_1\dfrac{dx}{x^2}\) hội tụ nên \(\int\limits^{+\infty}_1\dfrac{x^2-1}{x^4+1}dx\) hội tụ
\(I=\int\limits^e_1x^2.ln^2x.\dfrac{1}{x\left(lnx+1\right)^2}dx\)
Đặt \(\left\{{}\begin{matrix}u=x^2ln^2x\\dv=\dfrac{1}{x\left(lnx+1\right)^2}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2x.lnx\left(lnx+1\right)\\v=-\dfrac{1}{lnx+1}\end{matrix}\right.\)
\(\Rightarrow I=-\dfrac{x^2ln^2x}{lnx+1}|^e_1+\int\limits^e_12x.lnxdx=-\dfrac{e^2}{2}+I_1\)
Xét \(I_1\), đặt \(\left\{{}\begin{matrix}u=lnx\\dv=2xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=x^2\end{matrix}\right.\)
\(\Rightarrow I_1=x^2lnx|^e_1-\int\limits^e_1xdx=...\)
Dễ dàng nhận thấy hàm dưới dấu tích phân dương
Đặt \(I=\int\limits^0_{-2}\frac{dx}{\sqrt{\left(x+2\right)\left(7-x\right)}}+\int\limits^7_0\frac{dx}{\sqrt{\left(x+2\right)\left(7-x\right)}}=A+B\)
Xét \(A=\int\limits^0_{-2}\frac{dx}{\sqrt{\left(x+2\right)\left(7-x\right)}}\)
\(f\left(x\right)=\frac{1}{\sqrt{\left(x+2\right)\left(7-x\right)}}\) ; chọn \(g\left(x\right)=\frac{1}{\left(x+2\right)^{\frac{1}{2}}}\)
\(\Rightarrow\lim\limits_{x\rightarrow-2^+}\frac{f\left(x\right)}{g\left(x\right)}=\frac{1}{\sqrt{5}}\) hữu hạn \(\Rightarrow\int\limits^0_{-2}f\left(x\right)dx\) và \(\int\limits^0_{-2}g\left(x\right)dx\) cùng hội tụ hoặc phân kỳ
Mà \(\int\limits^0_{-2}\frac{dx}{\left(x+2\right)^{\frac{1}{2}}}\) có \(\alpha=\frac{1}{2}< 1\) nên hội tụ \(\Rightarrow A\) hội tụ
Tương tự: xét \(B=\int\limits^7_0\frac{dx}{\sqrt{\left(x+2\right)\left(7-x\right)}}\)
\(f\left(x\right)=\frac{1}{\sqrt{\left(x+2\right)\left(7-x\right)}}\) chọn \(g\left(x\right)=\frac{1}{\left(7-x\right)^{\frac{1}{2}}}\Rightarrow\lim\limits_{x\rightarrow7^-}\frac{f\left(x\right)}{g\left(x\right)}=\frac{1}{3}\) hữu hạn
\(\Rightarrow\int\limits^7_0f\left(x\right)dx\) và \(\int\limits^7_0g\left(x\right)dx\) cùng bản chất
\(\alpha=\frac{1}{2}< 1\Rightarrow\int\limits^7_0g\left(x\right)dx\) hội tụ \(\Rightarrow B\) hội tụ
\(\Rightarrow I=A+B\) hội tụ
Tìm theo pp Lagrange bị 1 điểm cực trị có \(B^2-AC=0\) ko kết luận được, do đó nên đưa về cực trị của hàm 1 biến
\(\left(x+2\right)^2+\left(y+2\right)^2=98\Leftrightarrow\left(\frac{x+2}{7\sqrt{2}}\right)^2+\left(\frac{y+2}{7\sqrt{2}}\right)^2=1\)
Đặt \(\left\{{}\begin{matrix}\frac{x+2}{7\sqrt{2}}=sint\\\frac{y+2}{7\sqrt{2}}=cost\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=7\sqrt{2}sint-2\\y=7\sqrt{2}cost-2\end{matrix}\right.\)
\(\Rightarrow z=98sint.cost+35\sqrt{2}\left(sint+cost\right)-24\)
Đặt \(\sqrt{2}\left(sint+cost\right)=a\Rightarrow-2\le a\le2\)
\(\Rightarrow sint.cost=\frac{a^2}{4}-\frac{1}{2}\)
\(\Rightarrow z=\frac{49}{2}a^2+35a-73\) với \(a\in\left[-2;2\right]\)
\(z'_a=49a+35=0\Rightarrow a=-\frac{5}{7}\)
\(z\left(-2\right)=-45;z\left(2\right)=95;z\left(-\frac{5}{7}\right)=-\frac{171}{2}\)
\(\Rightarrow z_{min}=-\frac{171}{2}\) khi \(a=-\frac{5}{7}\) ; \(z_{max}=95\) khi \(a=2\)
Chọn C
Ta có
I = 4 ∫ 1 e x ( 1 + ln x ) d x = 2 ∫ 1 e ( 1 + ln x ) d ( x 2 ) = 2 1 + ln x x 2 | 1 e - ∫ 1 e x 2 . 1 x d x = 2 2 e 2 - 1 - e 2 2 + 1 2 = 3 e 2 - 1
Nên a=3; b=-1 nên M=5.